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“Maximum information crystal calorimetry” for a 
hybrid dual-readout calorimeter system at e+e- colliders

Design drivers: 

Longitudinal and transverse segmentation
(to provide more handles for particle flow algorithms and 
achieve 30%/√E energy resolution for jets)

Separate readout of scintillation and Cherenkov light
(for integration with a dual-readout hadron calorimeter)

Precise time tagging for both MIPs and EM showers
(time resolution better than 30 ps) 

Excellent energy resolution to photons and neutral hadrons 
(~3%/√E and ~30%/√E respectively)

More details in:
2020 JINST 15 P11005

https://doi.org/10.1088/1748-0221/15/11/P11005


Performance highlights at an e+e- collider

Highlights summary:

● Recovery of bremsstrahlung photons to improve the resolution of the recoil mass signal 
in Higgstralhung events from Z→ee decays to about 80% of that from Z→ μμ decays

● Clustering of π0 photons ahead of jet clustering algorithms 
to reduce angular spread of jet particles in 4-6-jet event topologies

● Use of dual readout in particle flow algorithm 
to achieve ~3% jet energy resolution at the Z/W boson masses

● Extend the coverage for physics studies to include final states with low energy photons 
(e.g. B-physics, see today’s talk from E.Perez)
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https://indico.in2p3.fr/event/22887/contributions/101462/attachments/67597/94819/2021_12_01_CPV_squashed_triangle.pdf


Crystals in calorimetry
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A sample of existing and future calorimeters

silicon

crystals

sampling
scintillator

L3

PWO, BGO, CsI

● Homogenous crystal calorimeters 

have a long history of pushing the 

frontier of high EM resolution

○ The entire EM shower is sampled

○ Large light signals are produced



Possible approach for DRO crystal EM calorimetry?
● Exploit a mixture of scintillation and cherenkov 

crystal fibers (e.g. LuAG, YAG, GAGG)
● Tune the sampling fraction to achieve the desired 

energy resolution
● See ongoing R&D for LHCb Upgrade SPACAL

L.Martinazzoli, Prototyping and Testbeam Results of a 
Tungsten-Crystal Spaghetti Calorimeter, IEEE 2021

● See also progress on the manufacturing side in 
C.Dujardin’s talk on Thursday

5
Decades of progress on crystal fibers for calorimetry applications

https://iopscience.iop.org/article/10.1088/1748-0221/8/
10/P10017

Developed within 
Crystal Clear Collaboration

2020 SPACAL-W LHCb 
prototype

E.Auffray @ FCC July WS

https://indico.cern.ch/event/995850/contributions/4417999/attachments/2274880/3864291/EAuffray_FCC01072021.pdf


610 GeV electron shower

front barrel crystal 
segment (6 X0)

rear barrel crystal 
segment (16 X0)

front endcap 
crystal segment 

rear endcap 
crystal segment 

● Barrel crystal section inside solenoid volume
● Granularity: 1x1 cm² PWO segmented crystals

● Radial envelope: ~ 1.8-2.0 m

● ECAL readout channels: 1.8M (including DRO)
solenoid

timing layers
(<1X0)

Integration of a crystal calorimeter option 
in the 4π Geant4 IDEA simulation



Layout overview
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● Timing layers
○ LYSO:Ce crystals (~1X0)
○ 3x3x60 mm³ active cell
○ 3x3 mm² SiPMs (15-20 um)

● ECAL layers
○ PWO crystals
○ Front segment (~6X0)
○ Rear segment (~16X0)
○ 10x10x200 mm³ crystal
○ 5x5 mm² SiPMs (10-15 um)

● Ultra-thin IDEA solenoid
○ ~0.7X0

● HCAL layer
○ Scintillating and “clear” PMMA fibers 

(for Cherenkov signal) inserted 
inside brass capillaries

σEM
E/E ~ 3%/√E

σt ~ 20 ps

σHAD
E/E ~ 26%/√E

● Transverse and longitudinal segmentations optimized for 
particle identification and particle flow algorithms

● Exploiting SiPM readout for contained cost and power budget
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● Dual readout needed only on rear segment
● Strategy can be customized for a given 

crystal choice (e.g. 2 SiPMs + optical filters 
on the rear crystal segment)

● Sensitivity to cherenkov photons in both the UV 
and infrared region with Silicon Photomultipliers

~1/λ²

infra-red 
optimized SiPM

UV optimized 
SiPM

Cherenkov photons 
above scintillation peak 
are much less affected 
by self-absorption

BGO/BSO have larger 
stokes shift, i.e. a wider 
range of transparency 
for ‘UV Cherenkov’

PWO BGO/BSO

reflective foil

Front crystal ECAL segment: 
Single 5x5 mm² SiPM per crystal 
optimized for scintillation light detection

Dual-readout in PWO and BGO/BSO crystals

Rear crystal ECAL segment: 
2 SiPMs with optical filters 
optimized for scintillation and 
cherenkov detection resp.

courtesy 
of Y.Lai

Estimated:
- >2000 phe/GeV for 
scintillation photons
- >100 phe/GeV for 
Cherenkov photons

See R.Calà et al, 
Characterization of 
BGSO for crystal 
calorimetry of future 
colliders @ IEEE2021



The dual-readout method in a hybrid calorimeter

1. Apply the DRO correction on the energy 
deposits in the crystal and fiber segments first

2. Sum up the corrected energy from both 
segments
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~ 0.43

~ 0.37

K0L  

(not interacting 
in the crystals)

K0L  

(all events)



Energy resolution for neutral hadrons

10

● Dual-readout method confirms its applicability to a hybrid calorimeter system
○ Response linearity to hadrons restored within ±1%

○ Hadron energy resolution comparable to that of the fiber-only IDEA calorimeter

K0L K0L σE/EHAD ~ 27%/√E ⊕ 2%



Calorimeter cost/performance optimization

11

● Integration of crystals section for EM particles with IDEA calorimeter offers 
room for overall detector cost optimization

○ Reduce sampling fraction and readout granularity in the hadronic segment 
(fibers-absorber sampling calorimeter) with limited impact on hadron resolution 
[e.g. increase of the brass tube outer diameter (OD) to 3-3.5 mm]

○ Relative channel reduction and cost decrease approximately with ~1/OD2

Brass capillaries
“Nominal” dimension

OD=2 mm, ID=1.1 mm

Active fiber diameter unchanged
Brass tube outer diameter varied 

1.5 mm 3.5 mm



Jet reconstruction with a dual-readout calorimeter
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IDEA DRO Calorimeter without crystals

‘Calorimeter only’ approach:

● Jet clustering (FASTJET Durham kT) using 
all calorimeter hits:

○ Both Scintillation and Cherenkov signals
○ Both for the ECAL (crystals) and the HCAL 

(fiber sampling)

● Apply a dual-readout correction based on the 
S and C components clustered within each jet

Comparable “calorimeter only” jet resolution of ~5.5% at 50 GeV 
achieved with the baseline IDEA calorimeter and with the addition of 
a dual-readout segmented crystals section



Dual-Readout Particle Flow Algorithm for jet reconstruction
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● Maximally exploit the information from the crystal ECAL for classification of EM clusters and use it 
as a linchpin to provide stronger criteria in matching to the tracking and hadron calorimeter hits

● Exploit the high resolution and linear response of the hybrid dual-readout calorimeter to 
improve precision of the track-calo hits matching in a particle flow approach



Single particle identification through ‘hits-topology’

Typical PFA with Si-W high 
granularity calorimeter
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DR-pPFA with high resolution 
DRO calorimeter

A moderate longitudinal segmentation, fine transverse granularity and the highest 
energy resolution for single particle identification
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Event display

isolated photons

neutral hadron

HCAL fiber towers

EM crystal rear

EM crystal front

Timing rear

Timing front
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  E
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Crystal 
section

Solenoid gap

Z→jj, B=2T



Jet resolution: with and without DR-pPFA
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Jet energy resolution and linearity 
as a function of jet energy in 
off-shell e+e-→Z*→jj events (at 
different center-of-mass energies):

● crystals + IDEA w/o DRO

● crystals + IDEA w/ DRO

● crystals + IDEA w/ DRO + pPFA

Sensible improvement in jet resolution using dual-readout information combined 
with a particle flow approach → 3-4% for jet energies above 50 GeV



Summary
● A cost-effective integration of a segmented dual-readout crystal calorimeter within the 

IDEA fiber calorimeter results in a highly performant hybrid calorimeter system 
suitable for future e+e- colliders

● Performance studies show promising results:
○ Excellent EM, HAD and jet resolution by combining the DRO information from different 

calorimeter segments (homogeneous crystals & sampling fibers)
○ Particle identification capabilities enhanced by the longitudinal segmentation in the 

crystal section and by the dual-readout information
○ Combination of the DRO information with a simplified particle flow algorithm shows 

additional improvement to the jet energy resolution achieving 3-4% for Ejet > 50 GeV

● Outlook and ongoing work
○ Further optimization of the DR-pPFA algorithm and of the detector design accordingly
○ Planning for prototypes for validation of detector simulation inputs
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Additional material
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Energy resolution for EM particles

● Contributions to energy resolution:
○ Shower fluctuations

■ Longitudinal leakage
■ Tracker material budget
■ Services for front layers readout

○ Photostatistics
■ Tunable parameter depending on:

● SiPM choice
● Crystal choice

○ Noise
■ Negligible with SiPMs

● High gain devices (~105)
● Small dark count rate within signal 

integration time window

19

σE/E ~ 3%/√E ⊕ 0.5%

Homogeneous 
PWO crystals



CNNs for particle ID with segmented crystal calorimeter
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π0→ɣɣ events single π-  event 

single e- event 
● Use Convolutional Neural Networks to exploit the crystal 

transverse + longitudinal segmentation and the
high sampling fraction (=1 in a homogenous calorimeter) 
for classification of EM clusters

● Using the crystal EM section only, a good classification of 
EM clusters can be achieved:

○ π± / e± 
■ e± ID with ~99.9% efficiency at 0.4% π± mis-ID probability

○ π0 / ɣ
■ Distinguish photons from π0 with an efficiency higher 

than 95% at mis-ID probability smaller than 5%

○ K0,L / ɣ
■ Distinguish EM and HAD neutral clusters in crystal section 

(i.e. clusters with no charge track pointing to it) as an early 
step in particle flow algorithm

single ɣ event



Crystal longitudinal segmentation matters

● Tangible improvements in particle ID from the longitudinal ECAL segmentation,
i.e. two crystal segments (front and rear) instead of a single crystal cell

Single particle gun events with uniform energy distribution in the range 1-100 GeV, 100k events for each type of particle 

factor ~10 
in fake rate 
reduction

factor ~2 
in fake rate 
reduction

π± / e± π0 / ɣ K0L / ɣ

factor ~5 
in fake rate 
reduction
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π0 photon splitting across jets
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● Many photons from π0 decay are emitted at a ~20-35° angle wrt to the jet momentum 
and can get scrambled across neighboring jets

● Effect is particularly pronounced in 4 and 6 jets topologies

HepSim: Z→ bb (e+e- @250 GeV)

Photons from π0  

Reconstructed π0  momenta 
follow π+/- (no bump)

6 jets

4 jets
2 jets



Efficiency and purity of the π0 clustering algorithm
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● A high EM energy resolution enables efficient clustering of photons from π0’s 
○ Large fraction of π0 photons correctly clustered with good σEM  (>90% for ~3%/√E)

perfect clustering for perfect 
energy measurement

more than half of the photons are 
wrongly paired for σEM>15%/√E

Blossom V - clustering algorithm

some ‘over-clustering’ effect 
for poorer energy resolution

3%/√E

This procedure improves the efficiency of jet clustering algorithms to correctly 
assign photons to the corresponding jet
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https://doi.org/10.1088/1748-0221/15/11/P11005


Recovery of Bremsstrahlung photons

~80% of resolution recovery 
with 3%/√(E)
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● Reconstruction of the Higgs boson mass and width from the recoil 
mass of the Z boson is a key tool at e+e- colliders

● Potential to improve the resolution of the recoil mass signal 
from Z→ee decays to about 80% of that from Z→ μμ decays
[with Brem photon recovery at EM resolution of 3%/√E ] 

Assuming tracker low-p 
resolution of 0.3%

Example from CEPC CDR

https://arxiv.org/abs/1811.10545


Studies of CP violation and EW physics at e+e- colliders

EM energy resolution at 3%/√E is 
required to study Bs decay final 
states with multiple neutrals 
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See R. Aleksan’s talk @
4th FCC Physics and 
Experiments Workshop

https://indico.cern.ch/event/932973/contributions/4080437/attachments/2140718/3607239/FCCee-week-2020_Calorimetry.pdf
https://indico.cern.ch/event/932973/contributions/4080437/attachments/2140718/3607239/FCCee-week-2020_Calorimetry.pdf


More on calo geometry and single particle performance
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Segmentation of calorimeter

● ECAL 
○ Radius: 1800-2000 mm
○ Segmentation in theta:

■ barrel: 2x180 = 360
■ endcap: 179 rings 

○ Segmentation in phi: 
■ barrel: 1360 rotations around the beam axis
■ endcap: tuned for each ring to have ~1x1 cm² crystals

● HCAL 
○ Radius: 2500-4500 mm
○ Segmentation in phi: 252
○ Segmentation in theta: nominal
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Geometry

● Just inside the solenoid
~22 cm of radial space
~22 X0 ~ 1 λI

● 2 MIP timing layers as a 
planar XY grid

● 2 EM shower layers with 
projective geometry
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Signals

● Hits in MIP timing layers:
○ t1, t2, E1, E2

● Hits in EM shower layers:
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Scintillation signal from both front and rear segments

Cherenkov signal from only the rear segment

Scintillation signal and time stamp from both layers



Angular resolution

● T1+T2: 0.3-1.0 mm spatial 
resolution along z with the MIP 
timing layer grid
(muons)
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● E1+E2: 0.3-0.45 mrad angular 
resolution for EM particles using 
center of gravity of the shower
(photons)



Energy resolution for EM particles

● Linearity within ±1%

Some shower leakage 
beyond 200 GeV

Driven by photostatistics as 
no tracker/dead material 
currently in simulation
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● Energy resolution:
electrons

*With no tracker or dead material in front



Response to single charged pions

● Sample of charged pions of “low energy” to understand the expected calorimeter 
response to the charged pions within the jets

● Strong non-linearity without DRO correction
● Some residual non-linearity for very low energies after DRO
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Some crystal options
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45 GeV electrons
X0

TRK = 0.3
ECAL length: 24 X0
Module width: 10 cm

PWO
RM = 2.00 cm
X0  = 0.89 cm

BGO
RM = 2.23 cm
X0  = 1.12 cm

CsI
RM = 3.57 cm
X0  = 1.86 cm

CsI
RM =  3.6 cm

PWO
RM = 2.0 cm

CsI
RM =  3.6 cm

PWO
RM = 2.0 cm

CsI
RM =  3.6 cm

PWO
RM = 2.0 cm

● PWO: the most compact, the fastest
● BGO/BSO:  parameters tunable by adjusting the Si-fraction
● CsI:   the less compact, the slowest, the brightest

better for PFA

better stochastic term

Crystal Density
g/cm³

λI
cm

X0
cm

RM
cm

Refractive 
index, n

Relative LY
@ RT

Decay time
ns

Photon density 
(LY / 𝜏D) ph/ns

dLY/dT 
(% / °C)

Cost (10 m³)
Est. $/cm³

Cost*X0
Est. $/cm²

PWO 8.3 20.9 0.89 2.00 2.2 1 10 0.10 -2.5 8 7.1

BGO 7.1 22.7 1.12 2.23 2.15 70 300 0.23 -0.9 7 7.8

BSO 6.8 23.4 1.15 2.33 2.15 14 100 0.14 -- 6.8 7.8

CsI 4.5 39.3 1.86 3.57 1.96 550 1220 0.45 +0.4 4.3 8.0



Photo-statistic requirements for S and C
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● A poor S (scintillation signal) impacts 
the hadron (and EM) resolution 
stochastic terms: 

○ S > 400 phe/GeV 

● A poor C (Cherenkov signal) impacts 
the C/S and thus the precision of the 
event-by-event DRO correction

○ C > 60 phe/GeV

● SCEPCal layout choices (granularity 
and SiPM size) provide sufficient 
light collection efficiency 

○ Need experimental validation 
with lab and beam tests

S > 400 phe/GeV C > 60 phe/GeV

Smearing according 
to Poisson statistics

SCEPCal 
baseline

SCEPCal 
baseline

Performance with no DRO 
correction in the ECAL


