

Vincent Boudry Institut Polytechnique de Paris

FCC-France WS 02/12/2021

INSTITUT

DE PARIS

POL

Particle Flow Approach

See Gerald's talk for more details

Full Reconstruction of single particles

- Charged mostly from tracker
- Neutrals only from calorimeters

Large Tracker

- Precision and low X₀ budget
- Pattern recognition

High precision on Si trackers

- Tagging of beauty and charm

y/mm

Large acceptance

HG Imaging Calorimetry

Vincent.Boudry@in2p3.fr

What is a 'CALICE' calorimeter ?

1) It is not a single calorimeter

- Calorimetric system : ECAL+HCAL + (X₀-thin) High Performance Tracker (system) complementary and well associated → small distance (NO MAGNET on the way)
 2) Optimised for Particle Flow
 - NOT the best calorimeter system (= Best Raw Energy measurement of single part.)
 - Measurement and Identification of all particles \supseteq (esp) in jets, τ , ...

best Boson mass measurement H \rightarrow ZZ, WW; Z, W \rightarrow jj. $\Delta(M_Z, M_W) \Rightarrow \sigma(E_i)/E_i \sim 30\%/\sqrt{E} \sim 3.5-5\%$

3) CALICE = R&D on detectors (prototypes)

SiD, ILD, CLICdet, CECP_{Baseline} = detector concepts implementing CALICE physics performances, \supset PFA ('physics' prototypes) \Rightarrow 'technological' prototypes

State of the Art

4,5 prototypes, 15 ⁺ years of R&D, all tested				ersonal opinion, ot the collaboration's
Si-W ECAL	(ALICE FoCAL)	Scint-W ECAL	AHCAL	SDHCAL
	20 mm W 2 c 1 c 1 c 1 c 2 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1			
0,5×0,5 cm² ×15 (→30) Si layers + W	0,003×0,003 cm² × 24 MIMOSA layers + W	0,5×4,5 cm² ×30 Scint+SiPM lay. + SS	3×3 cm ² × 38 Scint+SiPM lay. + SS	1×1 cm² × 48 layers GRPC + SS
Resolution – R _M ✔ Intégration ✔ Cost – Calibration ✔	Resolution ✓ R _M ✓✓ Intégration ?? Cost ?? Calibration ?	Resolution ✓ R _M ? Intégration ✓ Cost ✓ Calibration –	Resolution ✓ λ ✓ Intégration ✓ Cost ✓ Calibration –	Resolution ✔ λ ✔ Intégration (Gaz) – Cost ✔ Calibration –
LLR, IJCLab, LPNHE, (LPSC) IFIC, Kyushu, KEK,	DE, NL, CERN	Shinshu, IHEP (CN)	DESY + DE	IP2I, LPC, (LAPP) CIEMAT, Shanghaï
Vincent.Boudry@in2p3.fr	FCC France 02/12/202	1		4/*

Timing in calorimeters: 0.1-1ns range

Cleaning of Events

adapted from L. Emberger Vincent.Boudry@in2p3.fr

Particle ID by Time-of-Flight

- Complementary to dE/dx
 - here with 100ps on 10 ECAL hits

S. Dharani, U. Einhaus, J. List FCC France | 02/12/2021

Ease Particle Flow:

- Identify primers in showers
- Help against confusion better sepration of showers
- Cleaning of late neutrons & back scattering.

Electronics & DAQ

Ωmega ASICs:

- A set of ASICs adapted for all CALICE large scale prototypes
 - Gradual improvement
 - Purely digital DAQ
- suitable for ILC conditions
 - low power consumption using power-pulsing (~1%)
 - low noise pre-amp, dual gain 12-bits ADC, ns TDC
 - self-trigger with local storage, delayed digitization and read-out
 - high integration (36-64 channels), daisy chaining

R&D:

– will required update for final integration: $\sim 3^+$ years of dev

- full zero-suppression, I2C bus, new technology
- Improvement of Timing ? Learning from CMS-HGCAL ASIC
- new scheme needed for circular colliders (power, readout)
 - Decision on DAQ Scheme : continous vs triggered ?
 Central trigger → lower noise req't, feasibile ?

Technical requirement on prototypes:

- Integration in cassettes 150 300 cm long
- 12k 27k cells (200-500 ASICs), power pulsed
 - sensitivity to mip signal (tracking)
 - uniformity, stability, linearity
- Reproducibility
 - Typically ~20–50 layers
 - will be $\sim 10^4$ in final design
- Ex: HGCAL HCAL

DAQ:

- Low power, Small size interfaces
 - ECAL-HCAL = 3 cm, HCAL-Coil or Barrel-Endcap ~ 5-6 cm
- Single side readout

ILC: Pulsed Powering in 2-4T field...

- Passive cooling, local power management

ECAL Example

Detector Parameters

- Cell lateral size

- Shower separation (EM~2×cell size)
- Cell time resolution (1 cm/c ~ 30 ps)
 - Time performance for showers
 - ParticleID, easier reconstruction
- Longitudinal segmentation
 - sampling fraction
 - E resolution (ECAL \sim 15%/ \sqrt{E})
 - shower separation/start
- ECAL inner radius; Barrel Z_{Start}
- ECAL-HCAL distance
- Barrel-Endcap distance
- Dead-zones sizes (from Mechanics, Cooling)

Number of cells $\nearrow \Rightarrow \text{Cost } \nearrow$ Cell density $\nearrow \Rightarrow \text{Power consumption } \checkmark$ Time resolution $\searrow \Rightarrow \text{Power } \checkmark$

> thr. passive vs active cooling dead-zones ≯

> > NEED TO BE FULLY RE-EVALUATED for EW region

Inner Radius $\nearrow \Rightarrow$ Tracking performance \nearrow Cost $\cancel{2}^2$ (\supset Magnet, Iron) Gaps $\cancel{2} \Rightarrow$ PFlow performances \checkmark

Review of physical implication (from TeV): see Linear collider detector requirements and CLD, F. Simon @ FCC-Now (nov 2020) Physics Requirement studies @ 250 GeV: see Higgs measurements and others, M. Ruan @ CEPC WS, (nov 2018)

Conclusion

CALICE enters a new phase :

- Construction of 1st large
 HG calorimeter (HGCAL : 6M voix)
- R&D ``final rush'' for ILC
 - Construction = ~8 years
 → 3 years of R&D +5y for FCC-ee...

Still many element to be tought of

- − stability, fiability (MTBF) \rightarrow redondance
- Power & Cooling (HL scheme)
- Performances (Z peak ≠ WW & Higgs Hill)
 - RAW (single particle) Resolution E, t \rightarrow (PID, Reco) \rightarrow Jets, FS

FCC-ee :

- Need to fix parameters & det. philosophy *for a large range of conditions* → **Think large / complementary**
 - Technology ↔ Performances : Trigger/DAQ ↔ noise, noise ↔ detection efficiency, cooling ↔ granularity, ...
- Time for new techno: Timing, ML optimisation, other sensors (Crystal), μ-cooling, Digital sensors (dSiPM)
 - Change of constraints ?

Extras

Vincent.Boudry@in2p3.fr FCC France | 02/12/2021

Validation of prototypes: common goals

Scientific goals:

- Energy & Time measurements:

 \leftarrow many already achieved with physical prototypes

- Linearity & Resolution to single $e,\,\pi$ in 1–200 GeV (\Rightarrow input to jet simulations for PFA)
- Saturation effects
- 5D Shower profiles
- Particle Flow Algorithm (PFA) tests : shower separation, reconstruction, identification

Technical goals:

- Operation of scalable design with power-pulsing
- Low-Energy Calibration with muons (mips) position scans, [High Energy: e, π]
 - Signal-to-noise of trigger (limited memories)
 - Uniformity: Efficiency, Mean response (Light Yield, Mip Peak, Multiplicity)
 - Input for **realistic digitization models** ⇒ input to simulation: prototype and Particle Flow
- Scientific goals (again): improved granularity, design, etc...
- Running as close as possible to **ILC mode** (200 ns BC), relaxed mode for practical reasons (typ. 4 μs BC)

SKIROC2 / 2A Analogue core

ECAL ToF

Kaon

Highly appreciated in flavor physics @ CEPC Z pole TPC dEdx + ToF of 50 ps

At inclusive Z pole sample:

Conservative estimation gives efficiency/purity of 91%/94% (2-20 GeV, 50% degrading +50 ps ToF) Could be improved to 96%/96% by better detector/DAQ performance (20% degrading + 50 ps ToF)

CEPC WS@IHEP CEPC

18/11/19

ECAL Separation

Clustering

Vincent.Boudry@in2p3.fr FCC France | 02/12/2021

SiD SiW-ECAL (not CALICE, but 'CALICE-like'

Uncorrected Energy Distribution

Energy leakage of electromagnetic particles estimated by analyzing the patterns in total energy deposition in each layer using neural networks.

(18+6) vs (60+0) GEANT4 models, with:

- energies range: 20 300 GeV
- incidence angles θ = 0° 45°
- azymuthal angles $\phi = 0^{\circ} 30^{\circ}$

Design performance possible with 16+8 configuration:

Corrected Energy Distribution Using a Neural Network

10

A crack-less ECAL geometry

