CP violation and determination of the "squashed" (b,s) unitarity triangle at FCC-ee

R. Aleksan (CEA/IRFU), L. Oliver (IJCLab), E.Perez (CERN)

3rd Workshop FCC France, Nov 30 – Dec 2, 2021, Annecy

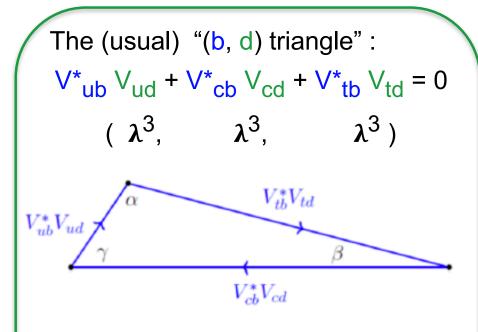
- CP violation and determination of the bs "flat" unitarity triangle at FCC-ee, <u>https://arxiv.org/abs/2107.02002</u>

12/1/21 1 E.Perez

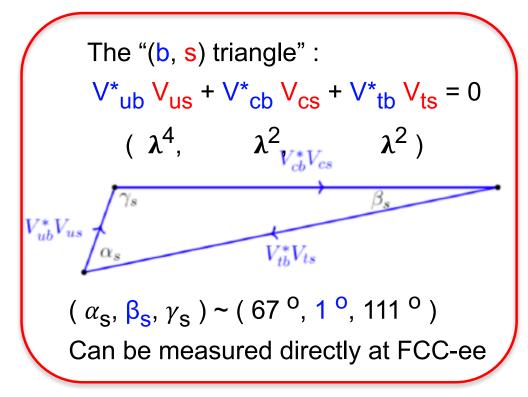
Unitarity triangles

Six triangular relations from unitarity of $V_{\mbox{\scriptsize CKM}}$. Among them :

$$V_{CKM} = egin{bmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$



All angles are (quite) large. Extensively studied experimentally



The "(d, s) triangle": even more squashed (SM: Relations between the angles of these triangles)

- Study expected precision at FCC-ee on (α_s , β_s , γ_s)
- Requirements on the detectors from these measurements

Experimental sensitivities and detector response

- Expected sensitivities given for 10^{11} produced \overline{B}_s and 3.9 10^{11} produced B^+ , corresponding to 150 ab⁻¹ at FCC-ee at the Z peak.
- Modelisation of the detector response :

Acceptance:
$$|\cos \theta| < 0.95$$
Track p_T resolution: $\frac{\sigma(p_T)}{p_T^2} = 2. \times 10^{-5} \oplus \frac{1.2 \times 10^{-3}}{p_T \sin \theta}$

• Smearing of the momenta and angles of particles in the decays of $\operatorname{Track} \phi, \theta \operatorname{resolution} : \sigma(\phi, \theta) \ \mu \operatorname{rad} = 18 \ \oplus \ \frac{1.5 \times 10^3}{p_T \sqrt[3]{\sin \theta}}$ interest

- Parametrisation based on typical performance of a light tracker at a future ee detector
- Vertex resolution : $\sigma(d_{Im}) \mu m = 1.8 \oplus \frac{5.4 \times 10^1}{p_T \sqrt{\sin \theta}}$

Vertex resolution : $\langle \sigma(\mathbf{d}_{\mathrm{Im}}) \rangle$ bachelor K in D_sK

$$<\sigma(d_{\rm Im})>\simeq 10~\mu{\rm m}$$

 Used for most results shown here

Excellent EM calo resolution

Calorimeter resolution :
$$\frac{\sigma(E)}{E} = \frac{3 \times 10^{-2}}{\sqrt{E}} \oplus 5 \times 10^{-3}$$

- Common SW: Full MC events + response of the IDEA detector with DELPHES
 - Detailed description of tracks, accounting for multiple scattering
 - Genuine vertex fitting

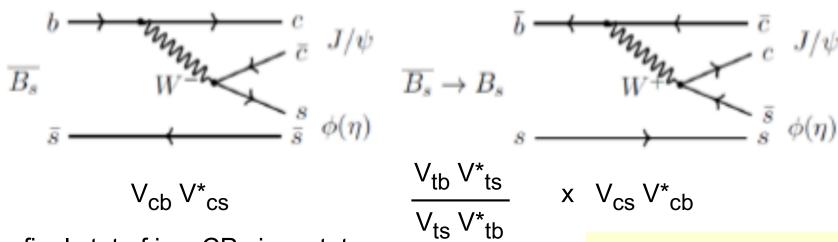
Measurement of β_s

$$\beta_s = \arg\left(-\frac{V_{tb}^* V_{ts}}{V_{cb}^* V_{cs}}\right)$$

 β_{S} : very small in the SM (1 degree), and known precisely. Hence can set strong constraints on New Physics.

- Golden channel: B_s -> $J/\psi \phi$
 - Measure CP violation in the interference between B_s mixing and $b \to ccs$ decay
- Analogous of B_d -> J/ψ K_s from which $\sin(2\beta)$ is extracted
- Already largely used at LHC, but low precision so far:

PDG:
$$\beta_s = (0.60 \pm 0.89)^\circ$$



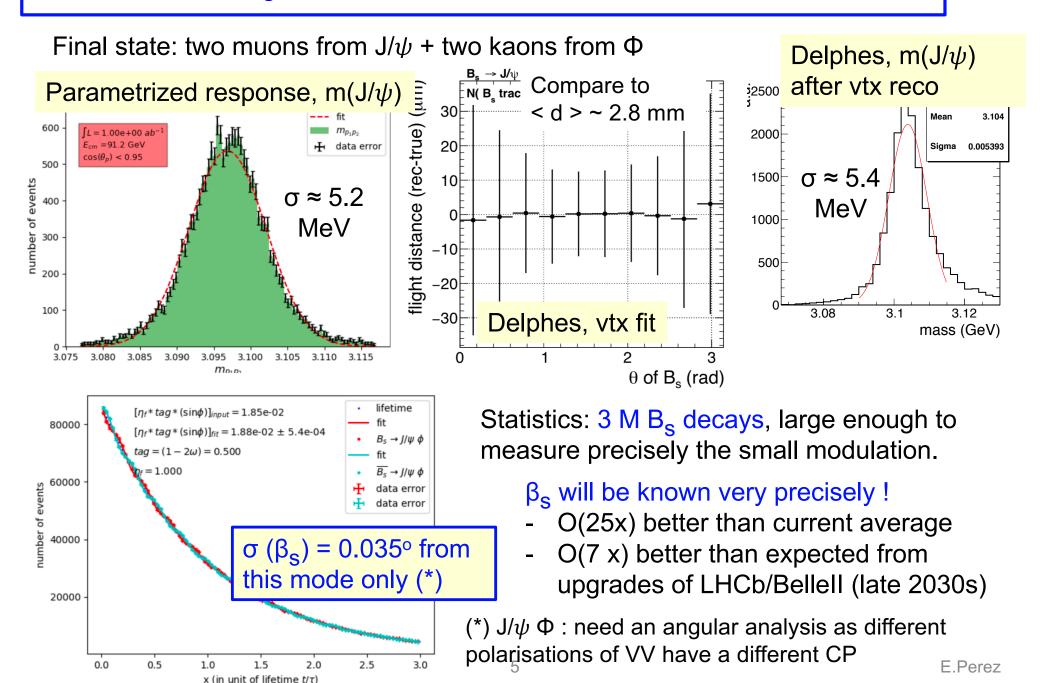
When final state f is a CP eigenstate:

$$\Phi_{CKM} (J/\psi \Phi) = 2 \beta_s (+\pi)$$

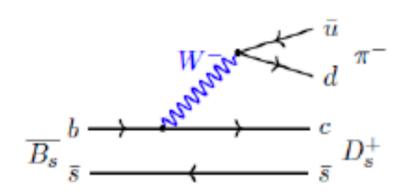
$$\Gamma \left(\begin{array}{c} - \\ B_s \end{array} \right) \sim e^{-\Gamma t} \left[1 \mp \eta_{f,CP} \left(1-2\omega \right) \sin \Phi_{CKM} \sin(\Delta m_s t) \right]$$

 ω = mistag rate, (well) measured independently, see later

Measurement of β_s



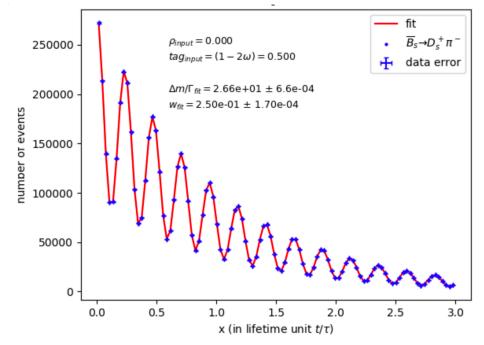
Measurement of the mistag rate: $\overline{B}_s \to D_s^+ \pi^-$



- Relatively large BR, 0.3 %
 - Expect 14 M such decays
- No diagram for B_s → Ds⁺ π⁻, i.e. flavourspecific decay and no CP violation in this mode.

Very convenient for probing the B_s tagging :

$$\begin{array}{lll} \Gamma \left(\stackrel{-}{B}_s \left(t \right) \rightarrow D_s^{~+} \, \pi^{-} \right) \sim e^{~-\Gamma t} \, \left[\, \left(\, 1 - \omega \right) \cos^2 \Delta m t / 2 \, \, + \, \omega \, \sin^2 \Delta m t / 2 \, \, \right] \\ \Gamma \left(\, B_s \left(t \right) \rightarrow D_s^{~+} \, \pi^{-} \right) \sim e^{~-\Gamma t} \, \left[\, \omega \, \cos^2 \Delta m t / 2 \, \, + \left(\, 1 - \omega \right) \sin^2 \Delta m t / 2 \, \, \right] \end{array}$$

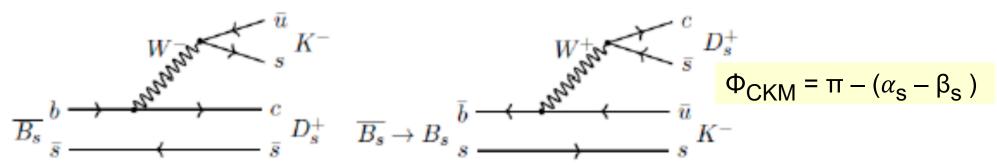


Very precise determination of the mistag rate, $\sigma(\omega) \sim 1.3 \ 10^{-4}$

And an improved determination of Δm_s , Δm_s / Γ_s to 5 10 ⁻⁴ i.e. O(100x) better than current PDG.

Measurement of α_s : B_s to D_s K

$$\alpha_s = \arg\left(-\frac{V_{ub}^* V_{us}}{V_{tb}^* V_{ts}}\right)$$



- Again CPV from the interference of mixing and decay
- But now have four time-dependent rates

$$\overline{\mathsf{B}}_{\mathsf{S}} \to \mathsf{D}^{+}_{\mathsf{S}}\,\mathsf{K}^{-},\,\overline{\mathsf{B}}_{\mathsf{S}} \to \mathsf{D}^{-}_{\mathsf{S}}\,\mathsf{K}^{+},\,\mathsf{B}_{\mathsf{S}} \to \mathsf{D}^{+}_{\mathsf{S}}\,\mathsf{K}^{-},\,\mathsf{B}_{\mathsf{S}} \to \mathsf{D}^{-}_{\mathsf{S}}\,\mathsf{K}^{+}$$

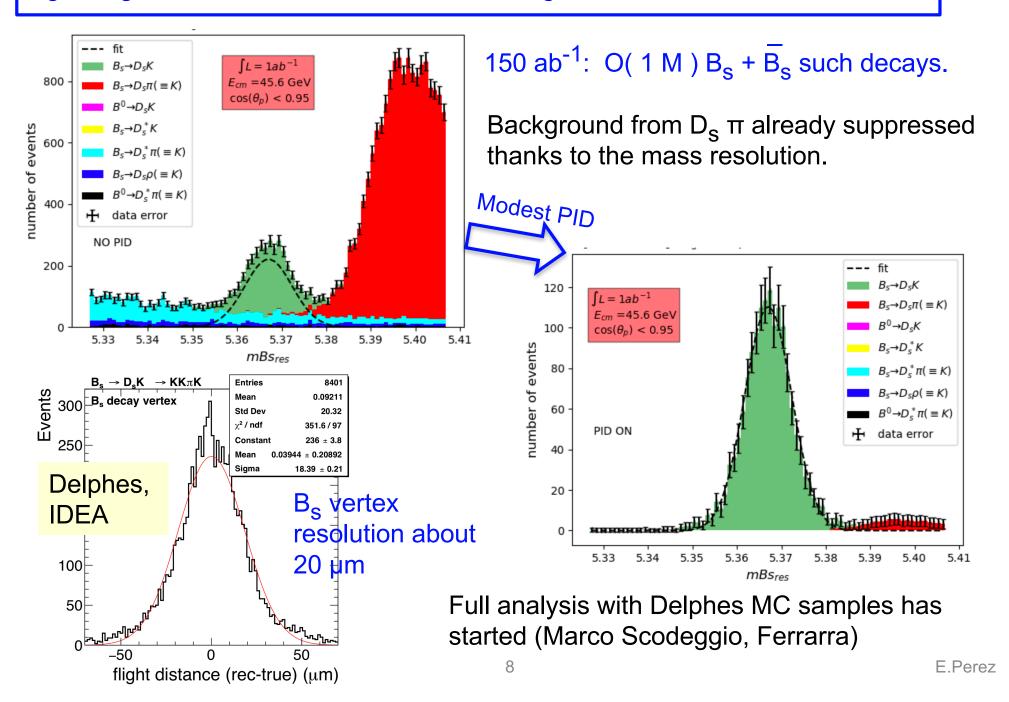
$$\Gamma(B_{s}(t) \to f) = |\langle f \mid B_{s} \rangle|^{2} \ e^{-\Gamma t} \{ [1 - \omega(1 - \rho^{2})] \cos^{2}\frac{\Delta mt}{2} \\ + [\rho^{2} + \omega(1 - \rho^{2})] \sin^{2}\frac{\Delta mt}{2} \\ - (1 - 2\omega)\rho \sin\phi_{CP}^{+} \sin\Delta mt \}$$

$$\Gamma(\overline{B_{s}}(t) \to \overline{f}) = |\langle f \mid B_{s} \rangle|^{2} \ e^{-\Gamma t} \{ [1 - \omega(1 - \rho^{2})] \cos^{2}\frac{\Delta mt}{2} \\ + [\rho^{2} + \omega(1 - \rho^{2})] \sin^{2}\frac{\Delta mt}{2} \\ + (1 - 2\omega)\rho \sin\phi_{CP}^{-} \sin\Delta mt \}$$

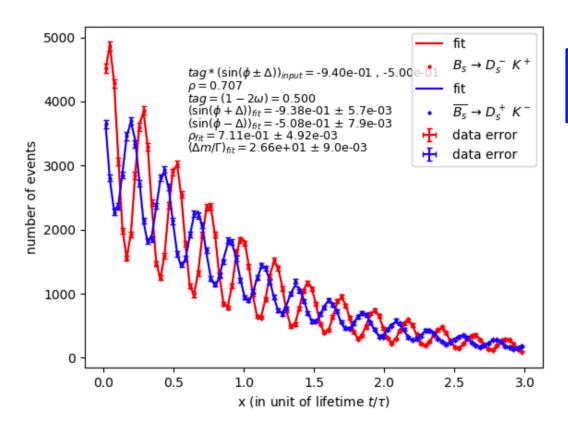
$$(+ \text{two other equations not shown})$$

Hadronic parameters ρ and δ can be determined from the data together with Φ_{CKM} (2-fold ambiguity) , hence negligible theoretical uncertainties

B_S to D_SK : signal reconstruction when $D_S \to \Phi(KK) \, \pi$



Sensitivity on α_{S} (or on γ)



Statistical precision on $\Phi_{\rm CKM}$ (on $\alpha_{\rm S}$) with 150 ab⁻¹ : 0.4 degrees

Resolution on Bs vertex = $20 \mu m$ i.e. O(40) x better than the wavelength of the oscillation. Hence vertexing performance as given with IDEA good enough for this measurement.

Algebra of the args($V_{\alpha i} V_{\beta j}^* / V_{\mu k} V_{\nu l}^*$): $\alpha_S = \gamma - \beta_S + \text{tiny angle from the (d,s) triangle}$

Hence this measurements is also a measurement of γ .

Current:

PDG: $\gamma = (71.1^{+4.6}_{-5.3})^{\circ}$

• i.e. 10x improvement w.r.t. current

LHCb/Bellell (late 2030s): similar sensitivity expected - PRD 102, 056023 (2020)

12/1/21

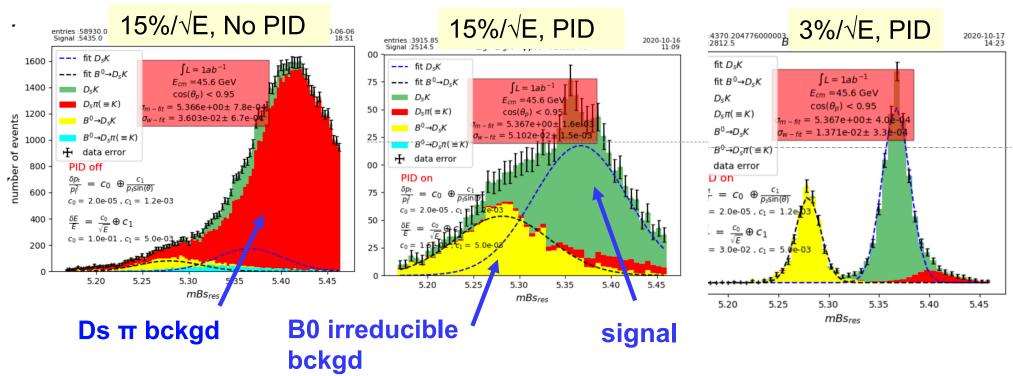
B_s to D_sK : inclusion of other modes

Resolution could be further improved by including other modes, that add a photon (e.g. Bs \rightarrow Ds* K) or a $\pi 0$ (e.g. Bs \rightarrow Ds K*) to the final state.

Most promising boost in statistics: Bs \rightarrow Ds K with Ds \rightarrow $\Phi \rho \rightarrow$ K⁺K⁻ $\pi \pi^0$. Could increase the statistics by a factor of 3.

Control of backgrounds: exquisite EM resolution (< 5%/√E) + PID (dEdx and ToF at 2m with 20 ns resolution used here)

Roy Aleksan, FCC workshop, Nov 2020



Measurement of γ_s : B⁺ to D⁰ K+

$$\gamma_s = \arg\left(-\frac{V_{cb}^* V_{cs}}{V_{ub}^* V_{us}}\right)$$

Direct CP violation in decays of B+ to D^0 (\overline{D}^0) K⁺: well-known method to measure the γ angle of the "usual" UT. Can be applied too to measure γ_s .

$$B^{+} \underbrace{\overline{b}}_{u} \xrightarrow{u} \overline{D^{0}} V_{us} V_{cb}^{*}$$

$$\overline{b} \xrightarrow{\overline{b}} \overline{v}_{u} \overline{D^{0}} V_{us} V_{cs} V_{ub}^{*}$$

With a final state f that is accessible to both D^0 and \overline{D}^0 : interference, and CPV.

$$\begin{split} & D^0 \ (\ \overline{D}{}^0\) \rightarrow \ K^+ \ K^- (\ \eta_{CP} = 1\) \ \text{or} \ K_s \ \pi^0 \ (\ \eta_{CP} = -1\) : \ \Phi_{CKM} \ = \ \pi + \gamma_s \\ & \Gamma \ (\ B^+ \rightarrow f_{(D)} \ K^+\) \ \neq \Gamma \ (\ B^- \rightarrow f_{(D)} \ K^-\) \ . \quad \text{Asymmetry} \ \mathcal{A}_{CP} \ \text{given by} \ : \end{split}$$

$$\frac{\pm 2\mathcal{R}\sin\Delta\sin\gamma_s}{1+\mathcal{R}^2\mp 2\mathcal{R}\cos\Delta\cos\gamma_s} \quad \mathcal{R}^2 = \frac{Br(B^+\to D^0K^+)}{Br(B^+\to \overline{D^0}K^+)}$$

$$\mathcal{R}^2 = \frac{Br(B^+ \to D^0 K^+)}{Br(B^+ \to \overline{D^0} K^+)}$$

R already known to 5%, can be much improved with D0 semi-leptonic decays

 Δ = strong phase difference. PDG: -130° ± 5°

Combination of \mathcal{A}^+_{CP} ($K^+ K^-$) and \mathcal{A}^-_{CP} ($K_s \pi^0$) gives Δ and γ_s (8-fold ambiguity)

Expected sensitivities

BR (B+
$$\rightarrow$$
 D0 K+) ~ 3.6 10 ⁻⁴ BR (B+ \rightarrow D0 K+) ~ 3.6 10 ⁻⁶ BR (D0 \rightarrow K+ K-) ~ 4.1 10 ⁻³ BR (D0 \rightarrow Ks π0) ~ 1.2 10 ⁻²
$$D^0K^+ D^0 \rightarrow K^+K^- \sim 5.8 \ 10^5$$
$$D^0K^+ D^0 \rightarrow K^+K^- \sim 5.7 \ 10^3$$
$$D^0K^+ D^0 \rightarrow K_s\pi^0 \sim 1.2 \ 10^6$$
(indicative # of B+ decays)

Asymmetries are sizable. E.g. with $\Delta = -130^{\circ}$ and $\gamma_s = 108^{\circ}$:

$$\mathcal{A}^+_{CP}(K^+K^-) \approx -15\%$$
 and $\mathcal{A}^-_{CP}(K_s \pi^0) \approx 14\%$

with expected statistical uncertainties of ~ 0.1% (absolute, accounting for approx. acceptance and efficiencies), which corresponds to $\sigma(\gamma_s)$ of 2.8° (uncertainty on γ_s depends on the value of Δ – ranges between < 1° to a few deg.)

Possible improvements with additional modes, e.g. $D \to K_s \eta$, $B^+ \to D K^{*+}$

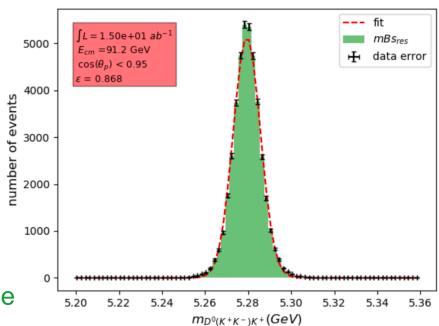
Measurement of γ_s to $1^0 - 2^0$ within reach.

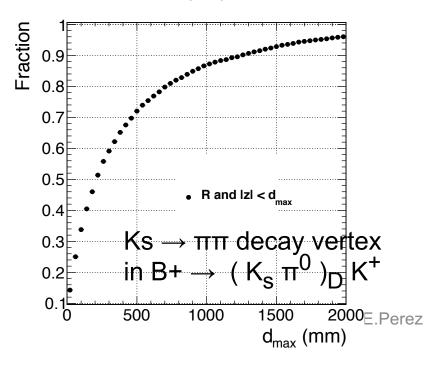
Signal reconstruction

 B⁺ → (K⁺ K⁻)_D K⁺: should be quite easy thanks to excellent mass resolution

 $\sigma \sim 6$ MeV on the B+ mass

- $B^+ \rightarrow (K_s \pi^0)_D K^+$: much more challenging
 - Displaced pion tracks from Ks decay :
 Up to O(1m) from the IP. Demands a large enough tracker
- Worse mass resolutions:
 - π⁰ : naïve σ worsens to 12 MeV even with exquisite EM resolution of 3%/√E
 - Finite resolution on Ks vertex will degrade this further: IDEA likely much better than Si tracker
- Hence more background comes in: Requires K / π separation in a wide p range 1 – 30 GeV





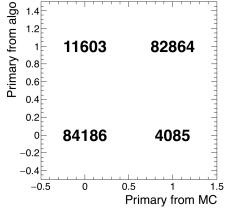
12/1/21 13

Reconstruction of Ks decays (WIP)

0th version of Ks reconstruction algorithm developed in FCCAnalyses, based on DELPHES samples. Known caveat: over-optimistic resolution on parameters of displaced tracks, will be fixed in the next version (F. Bedeschi).

- Identify the non-primary tracks
 - Fit a primary vertex with all tracks
 - Remove the track with the highest chi2 if this chi2 is > some cut (25)
 - Run the fit again, iterate

Probability correct assignment: ~ 90%



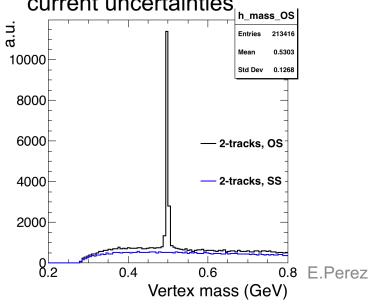
- Using the non-primary tracks: find Ks candidates from all 2-track combinations
 - Fit the 2 tracks to a common vertex
 - Propagate the tracks to this vertex
 - Build the vertex mass, using m = pion mass for each leg

Loose chi2 cut, mass window, opposite-charge pairs: good efficiency and purity..

To be quantified with:

- upgraded version of DELPHES
- the FullSim tracking of the CLD detector

Mass resolution ~ 3 MeV with current uncertainties, mass osl



12/1/21 14

Summary

Precise direct measurement of the three angles of the "squashed" (b,s)
unitarity triangle possible at FCC-ee:

```
β_s: to 0.035° or better ( 0.035% ) via Bs \rightarrow J/\psi Φ - 25x better than the current precision α_s: to 0.4° or better ( 0.5%) via Bs \rightarrow Ds K γ_s: to 1° ( 1% ) via B+ \rightarrow D0 K+
```

Simple relation between the phases measured in these three processes:

$$-\Phi$$
 (DsK) + Φ (J/ ψ Φ) + Φ (D0K) = 0

should hold in the Standard Model.

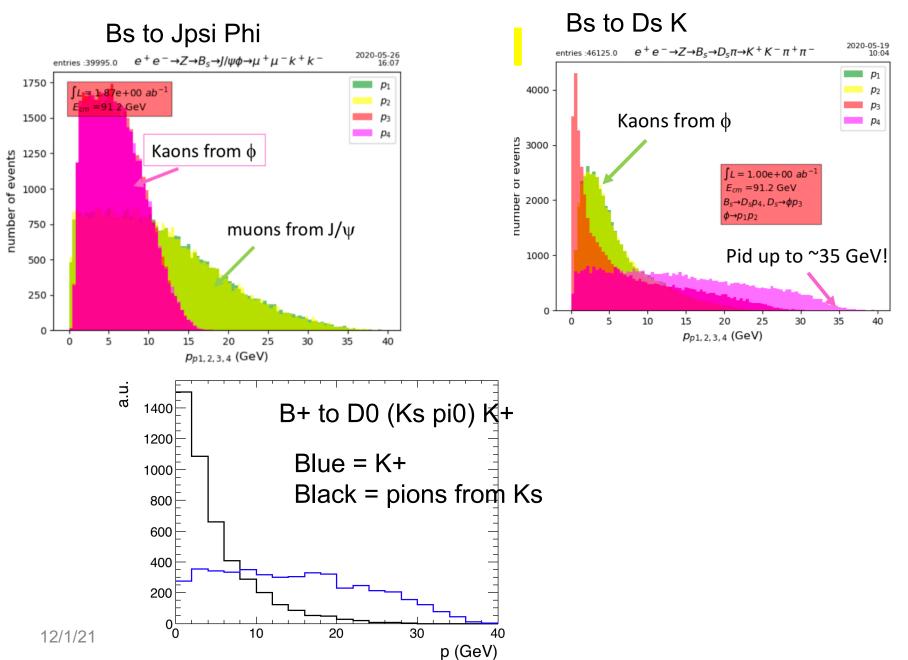
These processes also provide good benchmarks for detector performance:

15

- Excellent tracking performance (mass resolutions)
- Excellent EM resolution (modes with neutrals)
- K/Pi separation in a wide p range
- Ks reconstruction (crucial for many flavour analyses)

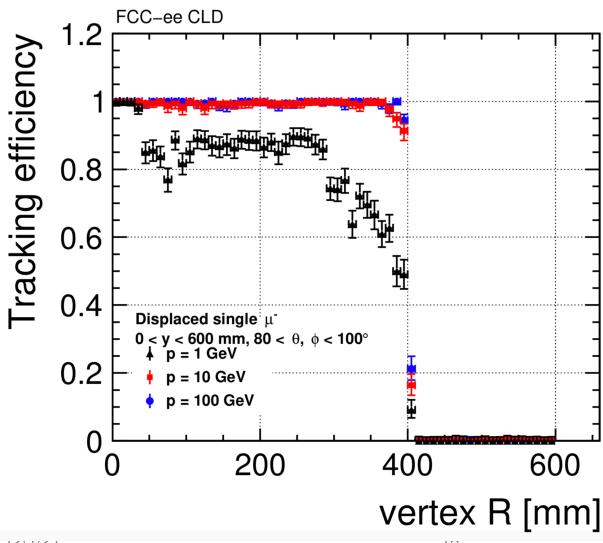
Backup

Kinematic distributions



Reconstruction of displaced tracks in CLD

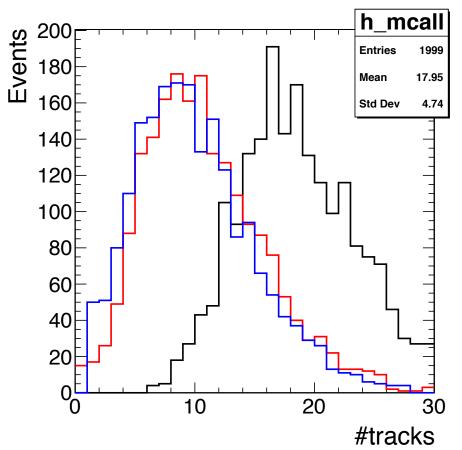
Full simulation results. Cf CLD paper, https://arxiv.org/abs/1911.12230



Selection of secondary tracks

In view of a Ks reconstruction: need to select secondary tracks

- Fit a primary vertex with all tracks
- Remove the track with the highest chi2 if this chi2 is > some cut (25)
- Run the fit again, iterate



Black = all tracks

Red = tracks that are MC-matched with primary particles

Blue = the reco'ed primary tracks with this procedure.

Conclusion: decent selection of nonprimary tracks