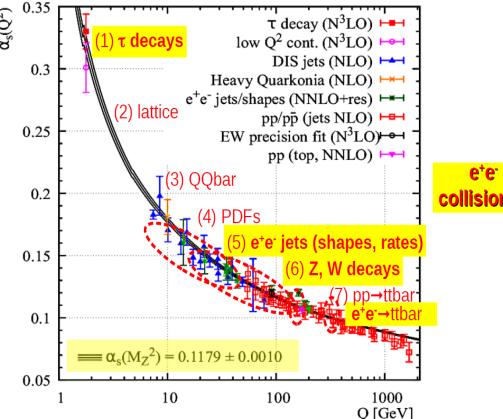
Perspectives for high-precision $\alpha_s(m_z^2)$ determinations @ FCC-ee


Bogdan Malaescu, <u>Luc Poggioli</u>

- Previous reports
- Goal
- Methods
- Preliminary results
- Next

Previous reports

- D.d'Enterria "Ultimate α_s determination @ FCC-ee"
 - @ 1st FCC France Workshop 2020
 - Topic: α_{S} extractions from hadronic decays of τ , Z/W evt shapes, jet rates
- B. Malaescu, "Prospects for High Precision QCD Studies@ FCCee"
 - @ 2nd FCC France Workshop 2021
 - Topics:
 - α_s from hadronic τ & Z decays
 - α_s from (ISR) jet production
 - Jet substructure opportunities


α_{S} evaluation from hadronic Z decays

- Theoretical prediction available at N³LO
 - Better convergence of perturbative series & less non-perturbative corrections wrt precise determination at lower scales (eg τ decays)

Used for "reference value"

Determinations at other energies evolved @ m_z scale & then compared to test the RGE from QCD

→ Need to study acceptance & reconstruction efficiency etc. -> optimize detector design

α_{S} evaluation from (ISR) jet production

N3LO + NNLL

(arXiv:1902.08158)

- Sensitivity to α_s
 - eg from 3/2 jet ratios
 - Or jet rates wrt total hadronic xsec
- High luminosity -> large evts samples with collinear/large angle ISR γ
 - allows to scan √s' with same detector
 & collider conditions
- Need to study
 - Jet and photon energy calibration and resolution
 - Acceptance & recons. efficiency -> optimizing detector design
 - Should be able to target $\delta \alpha_{\text{S}}$ / α_{S} < 1%

FCC_France-01/12/21

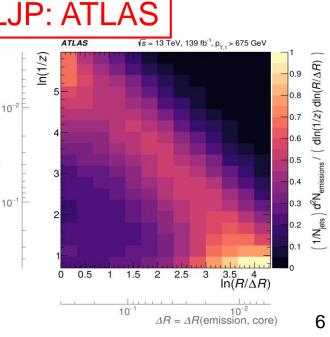
)00000

N2LO + NLLA

(arXiv:1205.3714)

Jet substructure opportunities (1)

- Algos/methods developed -> study jet substructure at LHC
 - -> Understand QCD effects inside jets, jet tagging, NP searches
- Precision studies possible also in clean FCC-ee environment
 - Impact on eg Calorimeter <mark>design</mark>
- Tool: Lund Jet Plane (LJP)
 - Principle


ANR successful (ATLAS, FCC)

- -> 1 PostDoc for 3 years
- To start 01/03/2022
 https://inspirehep.net/jobs/1972819
- Angle & Momentum fraction of gluons emission wrt origin parton
- q/g not available -> Use Proxy: Tracks/Calo
- Goals
 - ATLAS: Improve x2 jet calibration uncertainties (dominate eg jet xsections)
 - ATLAS: Improve by ~30% discrimination between jets from q, g, H, W/Z

• FCC-ee: Detectors optimization for LJP reco; α_{S} extraction & running test $_{\text{LP}}$

Jet substructure opportunities (2)

- Lund Jet Plane
 - Ln(1/z) vs $Ln(R/\Delta R)$
 - Use Proto-jets then reclustering with ordering
- Directions
 - Analysis techniques
 - -> include calo info
 - Crucial impact on optimizing detector design
 - Determination of α_{s}
 - LJP -> Natural separation between pert./Non-pert.
 - Focus on perturbative region-> Precise α_{s} extraction
 - Jet classification w/modern techniques (ML)

hard collinea

 $\ln(R/\Delta R)$

LJP: Principle

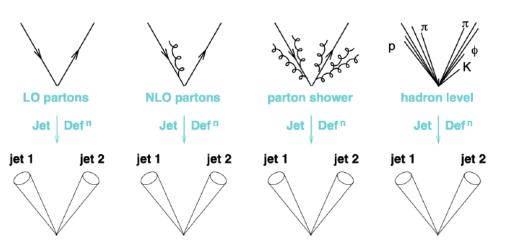
ln(1/z)

10

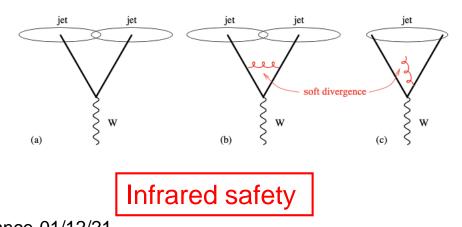
UE,

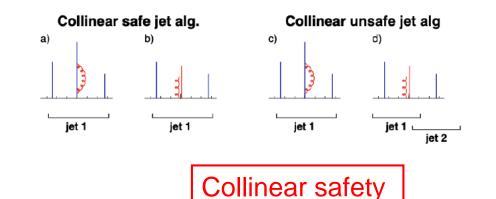
MPI

First studies


Performed in official FCCSW framework Sukyung Kim (M2 intern, Spring 2021)

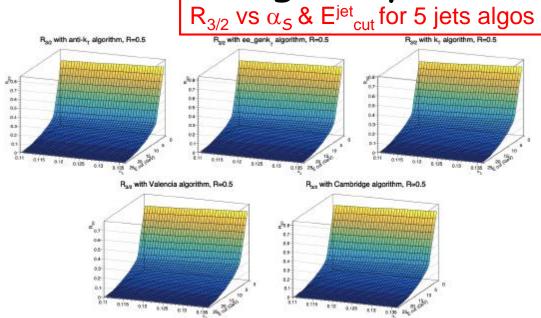
- Generation
 - Pythia e+e- -> Z -> qq at $s^{1/2}$ = m_Z
 - Only generator available when starting the study but LO
 - > Mimic Higher order & α_{S} values via FSR
 - 'TimeShower:alphaSvalue' parameter
- Fast simulation: Delphes with IDEA simulation
- Analysis
 - Official python code (developed for top studies by Julie Torndal)
 - Integrates various jets reconstruction algorithms
 - Ad-hoc C++ code on .root files

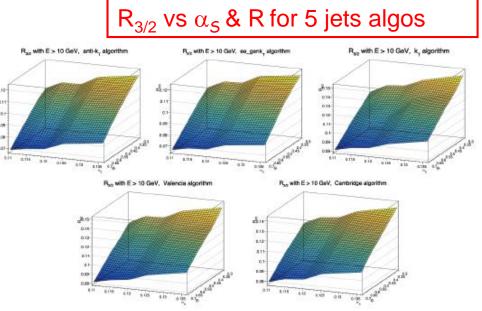

Jet Reconstruction


LP

- Observable R_{3/2}: #evts w/ ≥ 3jets / #evts w/ ≥ 2 jets
 - Directly sensitive to α_{S}
- Principle
 - Jet algorithms

- Properties




FCC_France-01/12/21

Jet algorithms: Examples

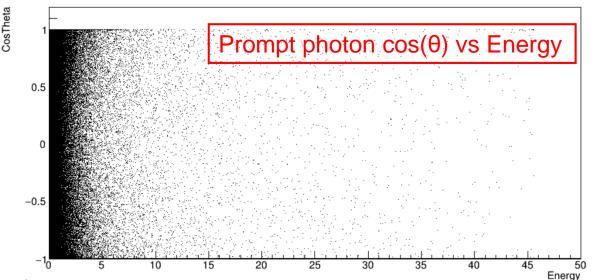
- Principle
 - Bottom-up algos -> repeatedly recombine closest pair of particles according to 'distance' measurements $d_{ij} = min(p_{Ti}^{2p}, p_{Tj}^{2p}) \frac{\Delta R_{ij}^2}{R^2}$
 - Examples
 - p=-1 anti-k_T ; p=1 k_T ; p=0 Cambridge-Aachen
- Start looking at systematics coming from jet algo choice

I P

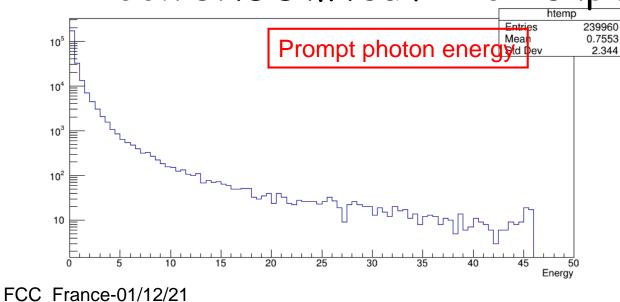
First preliminary results

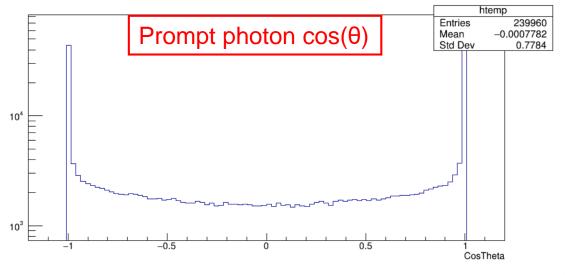
- Look at
 - #jets w/ and w/ fiducial acceptance cuts & jet energy cut #iets $R_{3/2}$ wrt α_{S} Number of jets (antikt) Jet ratio R=0.5 hist_nb_jets_Ecut10 80000 E > 10 GeV 100000 2.461 Mear 0.4806 Std Dev 70000 3+jets / 2+jets = 0.214 #theta in range [0, #PI] 0 60000 3+jets / 2+jets = 0.103 #theta in range [1.0, 2.1] 50000 0.095 40000 30000 0.09 20000 10000 0.085 0.5 1 1.5 2 2.5 0.11 0.115 0.12 0.125 0.13 0.135 3 3.5 4.5 αS Number of iets
 - R_{3/2} vs α_S (statistical error bars for 100k evts/ expected ~10¹²)
 · Clear correlation with 'structure', probably linked to generator choice

NLO generators: Status


- Madgraph v3.1
 - Runs but not tested completely w/ Delphes interface
 - For ee Herwig and/or Sherpa recommended
- Herwig 7
 - Available as standalone. Difficult to use w/o full directory structure
 - Bootstrap method (i.e full install from scartch): Does not compile
- Sherpa 2.2.9
 - Full install from scratch OK
 - Interface with hadronization from Pythia does not work
 - LHE output format. Fails 'PYTHIA Error in ProcessLevel::checkColours: incorrect colour assignment'
- HepMC output format. Needs to install hepMC-332 from scratch. Link fails

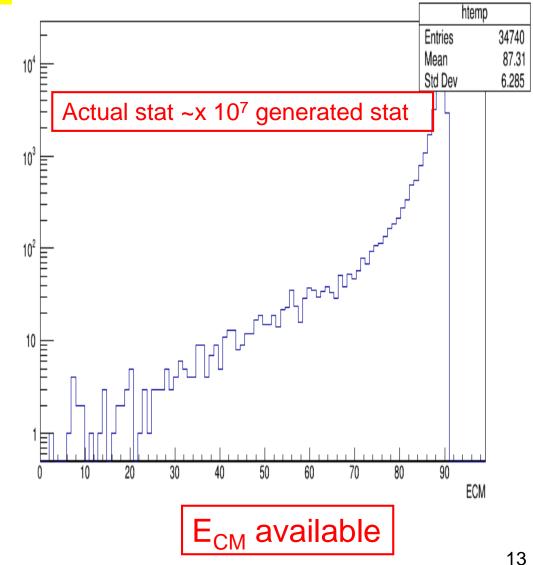
ISR: Use of KKMCee (1)


LP


KKMCee V4.30

- Z -> qq evts @ Z pole
- Fragmentation OFF
- Output format .LHE
- Interfaced to Delphes + IDEA fast sim

• 100k evts sim'ted / $\sim 10^{12}$ exp'ted



ISR: Use of KKMCEee (2)

Extremely preliminary results!!

- Photon selection (@4vector level)
 - E > 1 GeV & abs(θ) > 150mrad
- E_{CM} available via ISR
 - Most likely possible down to 10 GeV
- Next
 - More statistics
 - With 1 γ system overconstrained
 - ->Evaluate ECM from final jets only
 - To be studied
 - Impact of jet calibration
 - Impact of jet reconstruction

Next

- Jet ratio 3/2
 - Critical: Redo study with Higher orders generators
 - Quantify effects of parameters
 - Jet energy cut, jet algorithm used (type & parameters)
 - Evaluate detector parameters on α_s precision extraction
 - Granularity, energy resolution
- + Running α_{S} with ISR
 - Reinforce first results from KKMCee
- Goal
 - Contribute to Snowmass white paper on QCD coupling α_{S}
 - Workshop in January https://indico.cern.ch/e/alphas2022