Tau physics and EW physics with taus

Jean-Claude BRIENT

Laboratoire Leprince-Ringuet CNRS/IN2P3 – Ecole polytechnique

1

At FCCee , it is estimated a production of $1.7 \times 10^{11} \tau + \tau -$

Some example of tau physics

Tau decays Search for NP

Tau neutrino mass

High lumi. allows to have a large stat. of tau decays to $5\pi^{\pm}$ (or $7\pi^{\pm}$?)

Tau CC universality , Michel parameters e vs μ , even at very low energy Control sample of PID efficiency (easy with Z decays)

Tau as polarimeter

for Z decays to $\tau\,\tau$, polarization and AFB(Pol), which could be affected by Z' somewhere BUT ALSO for a very important piece of the program at FCCee : the CP violation in Higgs decays

At FCCee , it is estimated a production of $1.7 \times 10^{11} \tau + \tau -$

Some example of tau physics

Tau decays Search for NP

Tau neutrino mass High lumi. allows to have a large stat. of tau decays to $5\pi^{\pm}$ (or $7\pi^{\pm}$?)

Tau CC universality , Michel parameters e vs μ , even at very low energy Control sample of PID efficiency (easy with Z decays)

Tau as polarimeter

for Z decays to $\tau\,\tau$, polarization and AFB(Pol), which could be affected by Z' somewhere BUT ALSO for a very important piece of the program at FCCee : the CP violation in Higgs decays

Lepton + 2 photons

With the right detector, FCCee can do it much better

(more stat. and very clean environment $... \ge 1$ order of magnitude better)

Rare decays

Take the example of

BR($\tau^{\pm} \rightarrow \pi^{\pm} \nu_{\tau} e^{+}e^{-}$)

BELLE-II

Contents	Syst. error
MC size	3.7%
$ee \to \tau\tau$	0.3%
Trigger	1.2%
π^0 veto	1.9%
Br's of BKG	4.4%
Luminosity	4.7%
Tracking	4.7%
PID	11.1%
Total:	14.4%

Meanwhile, it is found that the cut on invariant mass of three prongs has strong model dependence. For two extreme cases: $Br_A = (1.46 \pm 0.13 \pm 0.21) \times 10^{-5}$ $Br_V = (3.01 \pm 0.27 \pm 0.43) \times 10^{-5}$ And a partial Br (M> 1.05 GeV/c^2) is determined: $(5.09 \pm 0.53 \pm 0.85 \pm 0.11) \ge 10^{-6}$ stat. syst. model.

PRD. 100, 071101(R) (2019)

 $\tau^{\pm} \rightarrow \pi^{\pm} \nu_{\tau} e^{+} e^{-}$

For FCCee ?

Contents	Syst. error
MC size	3.7%
ee → ττ	0.3%
Trigger	1.2%
π^0 veto	1.9%
Br's of BKG	4.4%
Luminosity	4.7%
Tracking	4.7%
PID	11.1%
Total:	14.4%

 e/π PID for 3 close charged tracks !! POSSIBLE solution

- dE/dX ??
- Timing in calo@O(10ps) ??

Meanwhile, it is found that the cut on invariant mass of three prongs has strong model dependence. For two extreme cases: $Br_A = (1.46 \pm 0.13 \pm 0.21) \times 10^{-5}$ $Br_V = (3.01 \pm 0.27 \pm 0.43) \times 10^{-5}$ And a partial Br (M> 1.05 GeV/c^2) is determined: $(5.09 \pm 0.53 \pm 0.85 \pm 0.11) \ge 10^{-6}$ stat. syst. model.

PRD. 100, 071101(R) (2019)

 $π^{\pm} ν_{\tau} ~ \mu^+ \mu^-$

Systematics for BELLE-II measurement

	Syst. of N _{BKG}		
	MC size	1.7%	X
	Luminosity	1.4%	
	$ee \to \tau\tau$	0.3%	
	Tracking	1.4%	x
_	Trigger	0.3%	
	PID	3.7%	х
	Br's of BKG	1.0%	
	π-µ mis-id	1.5%	x
	Total	4.9%	

Uncertainty of the branching fraction $\boldsymbol{Br}(\tau^{\pm} \to \pi^{\pm} l^{+} l^{-} \nu_{\tau}) = \frac{\tilde{N_{\text{obs}}} - N_{\text{BKG}}}{\sigma_{\tau\tau} \cdot \mathcal{L} \cdot \epsilon_{\text{sig}}} \quad N_{\text{BKG}} = \mathcal{L} \cdot (\sum_{i} \sigma_{i} \cdot \epsilon_{i})$

$$\epsilon = \epsilon_{initial} \cdot R_{trk} \cdot R_{PII}$$

$$\frac{\Delta \mathcal{B}}{\mathcal{B}} = \sqrt{(\frac{\Delta \sigma_{\tau\tau}}{\sigma_{\tau\tau}})^2 + (\frac{\Delta \mathcal{L}}{\mathcal{L}})^2 + (\frac{\Delta \epsilon_{sig}}{\epsilon_{sig}})^2 + (\frac{\Delta R_{sig}}{R_{sig}})^2 + (\frac{\Delta N_{BKG}}{N_{obs} - N_{BKG}})^2 + (\frac{\Delta N_{obs}}{N_{obs} - N_{BKG}})^2}$$
The systematics uncertainty includes:

- Cross section of $\tau\tau$: 0.919 ± 0.003 nb, by KKMC.
- Luminosity: 1.4% using Bhabha events.
- Statistic error of MC: Poisson variance
- Tracking efficiency: Using partially reconstructed $D^* \rightarrow D^0 \pi_{slow}$, $D^0 \rightarrow K_S^0 \pi^- \pi^+$, $K_S^0 \rightarrow \pi^- \pi^+$ (one daughter here allowed not to be reconstructed). Comparing track finding in MC and EXP, 0.35% per track. Low momentum region is checked by $B^0 \rightarrow D^{*-} \pi^+$, π_{slow} in D^{*-} serves as probe.
- Particle identification: $D^{*+} \rightarrow D^0 \pi^+_{slow} \rightarrow K^- \pi^+ \pi^+_{slow}$ for $\pi ID (\pi^+_{slow})$ serve as tag; K⁻, π^+ as probe), $\gamma\gamma \rightarrow l^+l^-$ and $J/\psi \rightarrow l^+l^-$ for lepton ID
- **Trigger**: by Belle simulation study
- Br of BKG components: taken from PDG.
- π^{0} veto: statistic error of the reference study.
- $\pi \rightarrow \mu$ mis-identification: statistic error of the reference study. 30

But for FCCee , it is not obvious, PID for 3 close tracks !! (due to boost of the 3 prongs in tau decays @Z peak)

Uncertainty of the branching fraction

$$Br(\tau^{\pm} \to \pi^{\pm} l^{+} l^{-} \nu_{\tau}) = \frac{N_{obs} - N_{BKG}}{\sigma_{\tau\tau} \cdot \mathcal{L} \cdot \epsilon_{sig}} \qquad N_{BKG} = \mathcal{L} \cdot (\sum_{i} \sigma_{i} \cdot \epsilon_{i}) \\ \epsilon = \epsilon_{initial} \cdot R_{trk} \cdot R_{PID}$$

$$\frac{\Delta B}{B} = \sqrt{(\frac{\Delta \sigma_{\tau\tau}}{\sigma_{\tau\tau}})^{2} + (\frac{\Delta \mathcal{L}}{\mathcal{L}})^{2} + (\frac{\Delta \epsilon_{sig}}{R_{sig}})^{2} + (\frac{\Delta N_{BKG}}{N_{obs} - N_{BKG}})^{2} + (\frac{\Delta N_{obs}}{N_{obs} - N_{BKG}})^{2}}$$
The systematics uncertainty includes:
• Cross section of tt. 0.315 \pm 0.003 nb, by KKMC.
• Luminosity. 1.4% using Birabha events.
• Statistic error of MC: Poisson variance
• Tracking efficiency. Using partially reconstructed D^{*} \to D^{0} \pi_{slow}, D^{0} \\ \to K_{S}^{0} \pi^{-} \pi^{+}, K_{S}^{0} \to \pi^{-} \pi^{+} (one daughter here allowed not to be reconstructed). Comparing track finding in MC and EXP, 0.35% per track. Low momentum region is checked by B⁰ \to D^{*-} \pi^{+}, \pi_{slow} in D^{*-} serves as probe.
• Particle identification: D^{*+} \to D^{0} \pi_{slow}^{+} \to K^{-} \pi^{+} \pi_{slow}^{+} for $\pi \PiD (\pi_{slow}^{+}$ serve as tag; K⁻, π^{+} as probe), $\gamma\gamma \to l^{+1}$ and $J/\psi \to l^{+1}$ for lepton ID

- Trigger by Belle simulation study
- **Pr of PKC components.** taken from PDG.
- $\pi^0\, veto:$ statistic error of the reference study.
- $\pi \rightarrow \mu$ mis-identification: statistic error of the reference study. ³⁰

POSSIBLE solution : TRACKING in CALO (Verified in ALEPH real data)

ULTRA GRANULAR CALORIMETER

Manqi RUAN (LLR) *

Arbor: pion reconstruction

* now at IHEP(Beijing)

FD together with other info (Nhits): Clear separation at different scales

Remark: Energy dependent Cuts, easier for charged particles

1mm	e+	u	h
e+	998	0	2
u	1	994	5
h	15	14	971

10mm	e+	u	h
e+	1000	0	0
u	0	995	5
h	17	14	969

30mm	e+	u	h
e+	1000	0	0
u	0	996	4
h	18	11	971

Another rare decays

BSM

Any signal means NP

SM

$$\mathcal{B}(\ell_1 \to \ell_2 \gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U^*_{\ell_1 i} U_{\ell_2 i} \frac{\Delta m^2_{i1}}{M^2_W} \right|^2$$

Unmeasurable small rates (10-54-10-49)

Do we need a good ECAL energy resolution for a good resolution in the mass ($\mu^{\pm}\,\gamma$) ?

Do we need a good ECAL energy resolution for a good resolution in the mass ($\mu^{\pm}\,\gamma$) ?

1 slide on **CP violation, Higgs sector**

 \sqrt{s} = 250 GeV and e⁺ e⁻ \rightarrow ZH \rightarrow Z $\tau^+\tau^-$

Essential to distinguish the tau decays

$$\tau^{\pm} \rightarrow \rho^{\pm} \nu_{\tau}$$

versus

Second item : Tau polarisation for EW measurements

T[±] as a polarisation analyser

 Full Simulation GEANT4 & Reconstruction with PFA Invariant Mass from t decays
 \rightarrow Need to reconstruct photon(s) in dense environment.... Even at Z peak

 500^{10} $\tau \rightarrow \rho v$ Cluster energy cut at 200 MeV

0.6 %

 $\tau \rightarrow a_1 v$

7.4 %

92.0 %

17

- Asymmetry of polarisation could be largely improved (very low syst.).
- A dedicated study must be performed for the syst. On polarisation itself
- To obtain this performance on the separation of tau decays , the efficiency to tag <u>the presence of low energy photon(s) is ESSENTIAL</u>

The comparison between ALEPH and L3 performances on EW measurements is telling you what is important ,

S/N for low energy photon(s)
Or
ECAL Energy resolution

(efficiency versus fake photon rate)

Most of the case, It apply ALSO to flavour physics

Conclusion

- FCCee could do much better than BELLE-II or HL-LHC for many measurements
- The purity of the selected tau pairs is very high (nothing to do with BELLE-II or LHCb)
- FCCee can address rare decays as well as other aspects , like EW measurements (tau polar)
- The systematics are "probably" easier to control (vs BELLE or LHC)
- TAKE CARE of ECAL imaging performances (not to the stochastic term of energy resolution of ECAL)

Thanks to

Yfan Jin (BELLE-II)

Mogens Dam (CERN for FCC tau physics)

Amy Rostomyan (BELLE-II)

Manqi Ruan (IHEP for ARBOR rec.)