Uncertainty of Semileptonic Asymmetry a_{sl}^s at the future high-luminosity Z-factory

Dennis C. Arogancia¹, Jan Mickelle V. Maratas¹ and Stephane Monteil²

¹MSU-Iligan Institute of Technology Iligan City, Philippines ²Université Clermont Auvergne Clermont-Ferrand, France

December 1, 2021

- **2** Uncertainty of a_{sl}^s at FCC-ee
- **3** Exploratory study of dilepton charge asymmetry at FCC-ee

4 Summary

Introduction

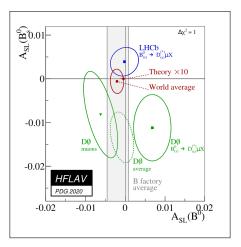
- In the SM, no mechanism yet to account for the abundance of matter in the universe from the measured values of *CP* violation.
- *CP* violation in neutral meson system is an important ingredient to determine the *CP* phase in the SM. Precision measurements of *CP* violating asymmetries will test the SM and deviations can reveal indirect signs of BSM physics.
- Neutral *B* meson system provides an excellent opportunity to explore new physics. Studies on the *B* meson mixing and decay have been performed in the collider experiments of Belle, Babar, D0, CDF and recently at LHCb.
- No CP violation in the mixing of B mesons have been observed to date. Limits are however consistent with the SM predictions.

Neutral meson mixing

- Neutral mesons (K⁰, B⁰, D⁰) can oscillate into their own anti-particle through mixing.
- Since SM CP-violating effects are expected to be highly suppressed in B^0 system thus they are sensitive to new physics.
- CP violation in mixing can be measured by looking at flavour-specific decays defined by

$$a_{fs} = \frac{\Gamma(\bar{B}^0_q \to B^0_q \to f) - \Gamma(B^0_q \to \bar{B}^0_q \to \bar{f})}{\Gamma(\bar{B}^0_q \to B^0_q \to f) + \Gamma(B^0_q \to \bar{B}^0_q \to \bar{f})}$$
(1)

Standard Model predictions¹


•
$$a_{sl}^d = -(6.5^{+1.9}_{-1.7}) \times 10^{-4}$$

•
$$a_{sl}^s = +(0.29^{+0.09}_{-0.08}) \times 10^{-4}$$

Arogancia, Maratas and Monteil

¹https://arxiv.org/abs/1106.4041

State of the art

Figure 1: Semileptonic asymmetry measurements from different experiments. World average results²: $a_{sl}^d = -0.0021 \pm 0.0017$ and $a_{sl}^s = -0.0006 \pm 0.0028$.

²Heavy Flavor Averaging Group (HFAG), arXiv: 1909.12524v2 [hep-ex] 1 Nov 2019

a^s measurement at LHCb

- The SM prediction of a_{sl}^s is at the order magnitude of 10^{-5} . The smallness of this CP violating effect makes this process an excellent laboratory to probe new CPV phases. At the future colliders like the FCC-ee, we can further explore the precision of this measurement by determining the uncertainty of a_{sl}^s .
- At LHCb, the semileptonic asymmetry is measured using the exclusive B_s^0 and \bar{B}_s^0 to $D_s^{\mp} \mu^{\pm} \overset{_{(r)}}{\nu}_{\mu} X$ decays where $D_s^{\mp} \rightarrow K^{\mp} K^{\pm} \pi^{\mp}$. It is expressed as

$$a_{sl}^s = rac{2}{1-f_{bkg}}(A_{raw} - A_D - (1-f_{sig})A_{bkg})$$
 where

 $A_{raw} = \frac{N(D_s^- \mu^+) - N(D_s^+ \mu^-)}{N(D_s^- \mu^+) + N(D_s^+ \mu^-)}, \quad A_D \text{ - detection asymmetry,} \\ A_{bkg} \text{ - production asymmetry of the backgrounds and} \\ f_{sig} \text{ - fraction of signal events given by } f_{sig} = \frac{N_{sig}}{N_{sig} + N_{bkg}}.$ • We explore the capability of FCC-ee by looking at these B_s^0 decays.

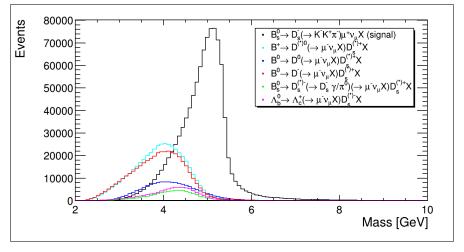
Signal and background process

Process	Branching fraction (%)	$N_{events}(imes 10^9)$
$B_s^0 ightarrow D_s^- \ell^+ u_\mu X$ (signal)	8.1 ± 1.3	2.57
Backgrounds:		
$B^- ightarrow ar{D}^{(*)0} D^{(*)-}_s X$	7.9 ± 1.4	1.20
$ar{B}^0 o ar{D}^0 D^{(*)-}_s X$	5.7 ± 1.2	0.434
$ar{B}^0 o D^+ D^{(*)-}_s X$	4.6 ± 1.2	1.09
$B^0_s ightarrow D^{(*)-}_s D^{(*)+}_s$	4.5 ± 1.4	0.19
$\Lambda^0_b o \Lambda^+_c D^{(*)-}_s X$	10.3 ± 2.1	0.25

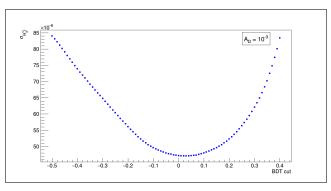
Table 1: Branching fractions and expected number of events of signal and
backgrounds for $N = 5.0 \times 10^{12}$ Z decays.

• At FCC-ee there is no production asymmetry, $A_P = 0$. This means that $A_{bkg} \equiv A_D$. Assuming that there is no correlation between the signal and background we estimated the statistical uncertainty of a_{sl}^s .

Event selection


- The signal and backgound events were generated using Pythia interfaced with EvtGen.
- The smearing values for momentum resolution and vertex are
 - Momentum resolution: $\sigma p_T/p_T = 3.0 imes 10^{-5}/p_T + 0.6 imes 10^{-3}$
 - Primary vertex: 3.0 μ m, Secondary vertex: 7.0 μ m
- Mass correction is applied to the reconstructed $D_s\mu$ mass using the expression

$$M_{corr} = \sqrt{M_{D_s\mu}^2 + |p_T^{mis}|^2 + |p_T^{mis}|}$$


where p_T^{mis} is the missing transverse momentum relative to the flight direction of the *B* meson.

• Multivariate analysis is performed using Boosted Decision Trees (BDT) with the following input variables: μ impact parameter and transverse momentum, vertex fitting χ^2 of reconstructed $D_s\mu$ and $\Delta\chi^2[\chi^2_{D_s\mu h(\pi^{\pm}/K^{\pm})} - \chi^2_{D_s\mu}]$.

Reconstructed $D_s\mu$ mass

Figure 2: Reconstructed $D_{s\mu}$ distribution with mass correction.

Figure 3: BDT cut vs $\sigma_{a_{sl}^s}$ ($A_D = 10^{-3}$).

- Statistical uncertainty of a_{sl}^s will reach 4.7×10^{-5} with $N_Z = 5.0 \times 10^{12}$ events.
- Uncertainty of detection asymmetry, σ_{A_d} , must be at the same level or below $\sigma_{a_d^s}$.
- Full simulation is needed to address A_d .

• At D0 experiment³, the like-sign dimuon charge asymmetry is defined as

$$A_{sl}^{b} = \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$$

where N^{++} and N^{++} are events containing semileptonic decays of b hadrons producing two positive or negative muons respectively.

• The total asymmetry A_{sl} has contributions from B^0 and B_s^0 charge asymmetries a_{sl}^d and a_{sl}^s respectively

$$A_{sl} = C_d a^d_{sl} + C_s a^s_{sl}$$

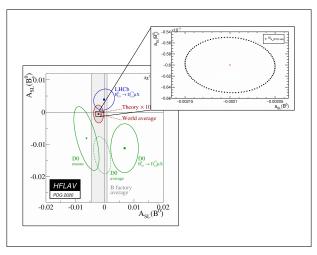
where $C_d = \frac{f_d \chi_d}{f_d \chi_d + f_s \chi_s}$ and $C_s = 1 - C_d$. The production fractions f_d and f_s are for B^0 and B_s^0 respectively. The coefficient C_d was determined to be 0.583 ± 0.015 . The total semileptonic asymmetry is $A_{sl} = (-0.496 \pm 0.153 \pm 0.072) \times 10^{-2}$. This differs by 2.8 standard deviations from SM expectation: $A_{sl}^{sm} = (-0.023 \pm 0.004) \times 10^{-2}$.

³Phys. Rev. D 89, 012002 (2014)

Arogancia, Maratas and Monteil

• The same-sign dilepton signal events can be expressed as

$$N_{\ell_1\ell_2}^{\pm\pm} = N_{\ell_1\ell_2}(1 \pm a_{\ell_1} \pm a_{\ell_2} \pm A_{CP})$$


in the limit of $A_{CP} \ll 1$ and $a_{\ell_i} \ll 1$, where

 $a_{\ell j} = \{\mu, e\}$ - lepton charge asymmetry of detection and identification $N_{\ell_1\ell_2}$ - total number of dilepton events coming from the semileptonic decays of different b hadrons including its mixing probabilities.

 A_{CP} - dilepton charge asymmetry.

• At FCC-ee, we can estimate the signal yield by using the semileptonic decays of B^0 , B_s^0 , B^{\pm} and Λ_b^0 . The total signal dilepton events is about $N_{\ell\ell} = 5.48 \times 10^9$ events. The estimated statistical uncertainty of A_{sl}^b is at the level of 10^{-5} .

State of the art

Figure 4: Semileptonic asymmetry measurements from different experiments. World average results²: $a_{sl}^d = -0.0021 \pm 0.0017$ and $a_{sl}^s = -0.0006 \pm 0.0028$. Inset: Level of statistical uncertainty at the order of 10^{-5} for FCC-ee.

²Heavy Flavor Averaging Group (HFAG), arXiv: 1909.12524v2 [hep-ex] 1 Nov 2019

Summary

- Using the quantities such as the μ impact parameter, transverse momentum of the μ , perpendicular component of the μ momentum along the B_s^0 direction and the vertex χ^2 in the multivariate analysis were able to significantly reduce the amount of background events.
- Controlling the uncertainty on the detection asymmetry of charged particles is however the name of the game for this kind of measurements. Full simulation in order..
- Uncertainty on the detection asymmetry still needs to be explored for its contribution to the statistical uncertainty of a^s_{sl}.
- The level of statistical uncertainty for the dilepton charge asymmetry is in the order of 10^{-5} however, here also, detector effects must be addressed.
- FCC-ee experiments are the best experimental environment to reach the precision to observe SM predictions.

End