

Introduction to the Flavour & QCD session

mostly based on hep-ex:2106.01259, EPJ+.

Stéphane Monteil, Clermont University, LPC-IN2P3-CNRS.

Outline

- Flavours@FCC-ee: setting the scene.
- Overview of some studies performed so far (and that will not be discussed today):
 - Rare decays.
 - CKM profile.
 - Tau Physics.
- Outlook.

A- Particle production:

- About 15 times the Belle II anticipated statistics for B^0 and B^+ .
- All species of *b*-hadrons are produced.
- Expect ~4.10⁹ B_c -mesons assuming $f_{B_c}/(f_{B_u}+f_{B_d})\sim 3.7\cdot 10^{-3}$

Working point	Lumi. / IP $[10^{34} \text{ cm}^{-2}.\text{s}^{-1}]$	Total lumi. (2 IPs)	Run time	Physics goal
Z first phase	100	26 ab^{-1} /year	2	
Z second phase	200	52 ab^{-1} /year	2	150 ab^{-1}

Particle production (10^9)	$B^0 \ / \ \overline{B}^0$	B^+ / B^-	$B^0_s \ / \ \overline{B}^0_s$	$\Lambda_b \ / \ \overline{\Lambda}_b$	$c\overline{c}$	τ^-/τ^+
Belle II	27.5	27.5	n/a	n/a	65	45
FCC-ee	300	300	80	80	600	150

B- The Boost at the *Z*:

- Fragmentation of the *b*-quark: $\langle E_{X_b} \rangle = 75\% \times E_{\text{beam}}; \langle \beta \gamma \rangle \sim 6.$
- Makes possible a topological rec. of the decays w/ miss. energy.
- C- Comparison w/ LHCb and Belle II. Advantageous attributes:

Attribute	$\Upsilon(4S)$	pp	Z^0
All hadron species		1	1
High boost		1	1
Enormous production cross-section		1	
Negligible trigger losses	1		1
Low backgrounds	1		1
Initial energy constraint	1		(•

1) FCC-ee specifics for Flavour Physics.

D- Detector performance: exquisite tracking is necessary and at reach. Invariant-mass resolution as it is in the current state of fast simulation:

Ultra-high resolution calorimetry and vertexing are in addition highly desirable. Performance to be determined in the Feasibility Study Phase.

S. Monteil

2) Overview of the studies: Rare decays & Friends

SM flirts with 5 standard deviations.

- They all tell the same: the anomalies provide a consistent pattern and require a modification of the SM *C*₉.
- How to go further with indirect measurements ? Final states with tau lepton is a promising way forward. FCC-ee likely unique to address these searches. Two flashed here Bc2taunu and b2stautau.

• $B^0 \rightarrow K^{*0} \tau^+ \tau^-$.

- Six momentum components to be searched for:
 - B^0 momentum direction from $K\pi$ fixes 2 d.o.f.
 - τ momenta direction fixes 4 d.o.f.
 - Mass of the τ provides 2 additional constraints
 - The system is in principle over-constrained.

• $B^0 \rightarrow K^{*0} \tau^+ \tau^-$.

- $B^0 \rightarrow K^{*0} \tau^+ \tau^-$: executive summary
- IDEA Delphes card.
- Vertexing performance from smearing: allows to assess the required performance.
- Study w/ background has started. No selection cut yet beyond the topological reconstruction efficiency (note ALEPH pi0 reconstruction eff. for the time being).
- O(200) events at SM value.
- Outlook: actual vertex detector geometries to be assessed.

 B_c → τ⁺v: another fundamental test of lepton universality. Counterpart of R_{D,D^{*}}. A promising study lies here [hep-ex:2007.08234]

Bottomline: few percent precision mostly limited by the knowledge of the BF Bu2JPsimunu.

2) Overview of the studies: CKM profile & Friends

- (FCC)
- The possible status of the CKM profile in the late 2030s (LQCD expected improvements in; LHCb-biased view)

• Belle II will add up to this.

2) Overview of the studies: CKM profile & Friends

Another projection is the model-independent search for BSM CPV phases in

FIG. 2. Current (top left), Phase I (top right), Phase II (bottom left), and Phase III (bottom right) sensitivities to $h_d - h_s$ in B_d and B_s mixings, resulting from the data shown in Table I (where central values for the different inputs have been adjusted). The dotted curves show the 99.7% CL (3σ) contours.

• Bottleneck in precision: Vcb and LQCD mixing parameters.

2) Overview of the studies: CKM profile & Friends

• *IV_{cb}I* measurement: the WW threshold. First look <u>here</u>.

Eff. $\setminus q$ -jet	<i>b</i> -jet	<i>c</i> -jet	uds-jet
<i>b</i> -tag	25 %		
<i>c</i> -tag	10 %	50 %	2 %

 Numbers picked from *Tracking* and Vertexing at Future Linear Colliders: Applications in Flavour Tagging — Tomohiko Tanabe.
ILD@ILC. IAS Program on High Energy Physics 2017, HKUST

> Actual study in order. A driver for the b- and c- tagging performance.

 With these state-of-the-art inputs, precision on IV_{cb}I improves from 1.9% (current) to 0.4%. Ultimate statistical precision is O(10⁻⁴).

• Sub-degree gamma angle measurement at reach :

Potential statistical gain of factor 4-5 with $D_s^{\pm} \rightarrow K^{*0}K^{\pm}$, $\phi \rho^{\pm}$, ... but background needs to be studied (see later)+ Additionnal potential gain (another factor ~2) with $B_s \rightarrow D_s^{*\pm}K^{\mp}$, $D_s^{\pm}K^{*\mp}$, $D_s^{\pm}K^{*\mp}$, most modes including $\gamma(s)$

• Several null tests of the SM accessible (more today).

 Touched so far through the lepton universality studies and Lepton Flavour violating decays (LFV Z and tau directly).

Observable	Measurement	Current precision	FCC-ee stat.	Possible syst.	Challenge
m _τ [MeV]	Threshold / inv. mass endpoint	1776.86 ± 0.12	0.004	0.04 (?)	Mass scale
τ _τ [fs]	Flight distance	290.3 ± 0.5 fs	0.001	0.04	Vertex detector alignment
Β(τ→evv) [%]	Selection of τ⁺τ',	17.82 ± 0.05	0.0001	0.000	Efficiency, bkg,
B(τ→μνν) [%]	state	17.39 ± 0.05	0.0001	0.003	Particle ID

© M. Dam

Necessary ingredients:

- Mass
- Lifetime
- Leptonic branching fractions

- A non-exhaustive Tau Physics advantages and prospects :
 - About 200 billions of tau pairs at the Z
 - About 3 times the Belle II anticipated statistics but with a 25 boost !
 - Beyond EWPO (polarisation), stringent lepton universality tests. Global improvement can be two orders of magnitude w.r.t. state of the art.
 - Three orders of magnitude w.r.t. state of the art in sensitivity for LFV Z decays. One order of magnitude for actual LFV tau decays.
 - Hadronic branching fractions, spectral functions, strong coupling constant: the QCD program with tau is rich.

3) Outlook

17

- Flavour Physics defines shared (vertexing, tracking, calorimetry) and specific (hadronic PID) detector requirements. The feasibility study entangles the Physics performance and detector concepts.
- A lot to be done to go beyond exploratory studies.

