

Testing charge-radius coupling of the composite Higgs boson at hadron colliders

Antoine Lesauvage

CC-France / Higgs and ElectroWeak Factory workshop

The Ohio State University, USA

December 01, 2021

Models with composite Higgs

- The idea that the Higgs sector may be composite is as old as the SM itself.
- At first, built with the same principle as QCD.
- Now such models present solutions to some of the SM issues as the hierarchy and naturalness issues, dark matter or matter-antimatter asymmetry.
- Present new particles that may be discovered !

What are we searching for here ?

- collider relevance of a coupling of the composite Higgs boson being sensitive to the electromagnetic and weak isospin structure of its constituents
- the Higgs boson emerges as a light pseudo-Nambu-Goldstone boson (pNGB)
- interested in a production of the Higgs boson in association with a new light composite pseudo-scalar η
- explore cut-and-count analysis at hadron colliders
- work with G. Cacciapaglia, S. Gascon-Shotkin, N. Manglani and K. Sridhar; more details in arXiv:2108.03005

Technicolor (TC)

- Consider a new strong gauge symmetry $G_{TC} = SU(N_T)_{TC}$ with new "technigluons" and "technifermions" transforming under G_f .
- Technifermion condensates can appear a lower energy scale breaking $G_{\!f}$ in a subgroup $F \subset G_{\!f}$.
- dim(G_f) dim(F) = n Goldstone bosons, massless or pNGB if symmetry is explicitly broken.
- Need another mechanism for the fermions to acquire a mass.

Composite Higgs (CH)

- As in TC, new strong sector associated to G_f symmetry for fermions.
- G_f broken in F containing the electroweak symmetry.
- $dim(G_f) dim(F) = n$ bosons de Goldstone, pNGB with a small mass.
- Fermion mass is obtained through partial compositeness.

Fundamental Composite Dynamics (FCD)

- Two main differences between TC and CH: electroweak symmetry is broken along G_f in TC but preserved in CH, and the particle discovered in 2012 comes from a condensate in TC whereas considered as a pNGB which is part of $SU(2)_L$ in CH.
- Can combine these theories in FCD so that this particle is a mix of a condensate and a pNGB.
- Done in considering a fundamental state combining the vacuum from the two theories.

Fundamental Composite Dynamics with SU(4)/Sp(4) symmetry breaking

Minimal model with SU(4)/Sp(4) symmetry breaking, used to obtain a dark matter candidate ϕ in the TC limit.

In a more general FCD model, two pNGB h (SM Higgs) and a singlet η :

$$\phi = \frac{h + i\eta}{\sqrt{2}}$$

The TC and CH limits are represented through:

$$\sin\theta = \frac{v_{SM}}{f}$$

We want to focus on anomalous couplings of photons because typical signatures for compositeness in the electroweak sector.

In the TC limit, this coupling is given by:

$$\mathcal{L} \supset \textit{ie} rac{d_B}{\Lambda^2} \left(\phi^* \overleftrightarrow{\partial}_\mu \phi
ight) \partial_
u F^{\mu
u}$$

Which can be rewritten in FCD:

$$\mathcal{L} \supset ie \frac{d_B}{\Lambda^2} \sin \theta \left(\eta \overleftrightarrow{\partial}_{\mu} h \right) \partial_{\nu} F^{\mu \nu}$$

$$\mathcal{L} \supset \textit{ie} rac{d_B}{\Lambda^2} \sin heta \left(\eta \stackrel{\leftrightarrow}{\partial}_\mu h
ight) \partial_
u F^{\mu
u}$$

- Generated by the components of the neutral pNGBs h and η that carry electromagnetic charges: charge-radius coupling
- Λ is the new physics energy scale
- d_B is a parameter, can be associated to the masses of spin-1 resonances

For better understanding: let's consider a new hyper-colour gauge group $Sp(2N_c)$ with two Dirac hyper-fermions U and D.

In this context, we have with the masses of the spin-1 resonances ρ :

$$rac{d_B}{\Lambda^2} = rac{m_{
ho_U}^2 - m_{
ho_D}^2}{2m_{
ho_U}^2 m_{
ho_D}^2} \sim rac{\delta m_
ho}{m_
ho^3}$$

Phenomenology of the model

Only interested in couplings with photon (although Z is possible and would give an additional contribution) \implies focus on the phenomenology consequences of this coupling.

- Previous coupling vanishes for on-shell photons \Longrightarrow it won't generate any decay of h or η
- Need a novel production mechanism for the pNGBs, i.e. production of η in association with a Higgs boson $e^+e^-; pp \to h\eta$
- This is generated with an off-shell photon

The mass of the pseudo-scalar η can acquire very different values.

- If $m_{\eta} < m_Z$, the dominant constraint will come from $Z \rightarrow \eta \gamma$.
- Here focus on $m_{\eta} > m_Z$ with the $\eta \rightarrow Z\gamma$ decay.

Production cross-section

• $\sigma_{h\eta} \propto \Lambda^{-4}$

• $\sigma_{h\eta}$ are feeble \implies need for high luminosity

Cuts based analysis for HL-LHC

HL-LHC

Study $pp \rightarrow \gamma^* \rightarrow H\eta$ events at 14 TeV.

- Signal $m_\eta >$ 90 GeV, $\eta \rightarrow Z\gamma$, $H \rightarrow bb$, Z to leptons
- Irreducible background $pp \rightarrow b\bar{b}l^+l^-\gamma$ and $Z \rightarrow ZH$
- Reducible background $jjl^+l^-\gamma$

Reconstruction with Pythia and FastJet, and dedicated cuts to discriminate s/b:

- * 1 fat jet with $m_j \in [100,170]$ GeV
- * p_{T,j} > 380 GeV
- * $p_{T,\gamma} > 85 \text{ GeV}$
- * $m_{\parallel} \in$ [86,96] GeV
- * $\Delta(l,\gamma) < 1.2$ and $\Delta(j,\gamma) > 2.0$
- * Simple b-tagging efficiency
- * $m_{II\gamma}$ must reconstruct the signal mass

Cuts	jjlla	cclla	bblla	hza	$h\eta$
$\sigma_{\rm fid} \ ({\rm ab})$	590	96	93	19	1.23
Events	10^{5}	10^{6}	10^{6}	10^{6}	10^{4}
Higgs reco.	337	856	3411	4913	1621
$p_T^{\eta} > 380$	242	695	2572	4625	1566
$p_T^{\gamma} > 85$	231	665	2497	4416	1274
$\Delta R_{\gamma Z} < 1.2$	57	187	636	1260	1259
m_{ll}	41	128	431	1037	1129
$m_{ll\gamma}$	2	1	9	29	1085
b-tags	0.0002	0.04	4.41	14.2	532
HL-LHC	$3.5 \cdot 10^{-6}$	$1.2 \cdot 10^{-5}$	0.0012	0.0008	0.20

- Not a lot of signal events remaining...
- but can distinguish signal from background

Cuts based analysis results for hadron colliders

- Construct a simple figure of merit as a function of ${\cal L}$ and Λ
- ${\mathcal L}$ is the expected integral luminosity
- Λ is the scale of the new physics ($\sigma_{XS} \propto \Lambda^{-4}$)

Discovery potential at $\Lambda \sim 1$ TeV (1.5 TeV) for HL-LHC (HE-LHC). Possibility to go up to 3 TeV for collisions at 100 TeV at FCC-hh.

Simple analysis with no systematic, no real detector simulation and simple cuts. The sensitivity could be improved using ML tools.

$$Z(\mathcal{L},\Lambda) = \frac{S}{\sqrt{S+B}}$$

FCC-ee

Electron colliders are interesting because cleaner experimental conditions. With the highest COM energy at 350 GeV: Study $e^+e^- \rightarrow \gamma^* \rightarrow h\eta$ events.

XS is too small even with optimistic setup... Solution: try photon fusion production mode or look at another e^+e^- collider.

FCC-ee

Electron colliders are interesting because cleaner experimental conditions. With the highest COM energy at 350 GeV: Study $e^+e^-\to\gamma^*\to h\eta$ events.

XS is too small even with optimistic setup...

Solution: try photon fusion production mode or look at another e^+e^- collider.

• Presented a search for a new pseudo-scalar particle

• A simple cut-and-count analysis has shown that signal can be distinguished from background

• Need to add systematics, realistic detector and a ML tool to enhance s/b

• Still this signature looks promising to look at at FCC-hh

Thanks for your attention !

Backup