Determination of Dark Matter properties at future e⁺e⁻ colliders

Alexander Belyaev

Southampton University & Rutherford Appleton Laboratory

Ilya Ginzburg, Dan Locke, Arran Freegard, Alexaner Pukhov, AB to appear

3rd FCC-France / Higgs & ElectroWeak Factory Workshop, Annecy, Nov.30-Dec.2 2021

The existence of Dark Matter is confirmed by several independent observations at cosmological scale Galactic rotation curves

DM is very appealing even though we know almost nothing about it!

Inert 2 Higgs Doublet model

$$\tilde{S}_{1/2}^{1/2}$$
(i2HDM)

$$\mathcal{L}_{\phi} = |D_{\mu}\phi_{1}|^{2} + |D_{\mu}\phi_{2}|^{2} - V(\phi_{1},\phi_{2})$$

$$\phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v+H \end{pmatrix}, \phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}D^{+} \\ D_{1}+iD_{2} \end{pmatrix}$$

$$\frac{D_{2}}{\sqrt{2}} \begin{pmatrix} \gamma, Z \\ \gamma,$$

Benchmarks and tools

- CalcHEP+PYTHIA8+Delphes3
- ISR+Beamstrahlung (CalcHEP)

ILC 500 design (from ILC TDR)

Benchmarks Parameters		BP1	BP2	
	M_D	60	60	
	M_+	160	120	
	M_{D_2}	160.85	120.85	
I2HDM p	parameters			
	λ_{345}	6.5×10^{-4}	7.0×10^{-4}	
	λ_2	1.0	1.0	
DM observables				
Ωh^2	SDM	0.111	0.112	
	FDM	0.108	0.109	
$\sigma^p_{SI}[{ m pb}]$	SDM	6.17×10^{-13}	6.17×10^{-13}	
	FDM	1.67×10^{-11}	1.65×10^{-11}	

MicrOMEGAs

- relic density
- DM DD and ID detection
- Invisible Higgs decay (under control – the small value of $M_{D2} - M_+$ split)

CheckMATE

 test against LHC current limits

Observables

$e^+e^- \rightarrow D^+D^- \rightarrow D_1D_1W^+W^- \rightarrow D_1D_1q'\bar{q}\mu\bar{\nu}$

Di-jet + muon + MET signature

- \sqrt{S} Is fixed (up to ISR+BRM effects)
- M_{miss} can be reconstructed: $M_{miss} = \sqrt{1}$
- charged lepton energy (muon), E_{μ}
- angle of reconstructed W-boson
 in the LAB system, $\cos \theta_W$
- the energy of W-boson reconstructed from the di-jet pair, E_{jj}
- The cross section itself, which includes spin factors

W-boson and charged lepton energy distributions $e^+e^- \rightarrow D^+D^- \rightarrow D_1D_1W^+W^- \rightarrow D_1D_1q'\bar{q}\mu\bar{\nu}$

 Edges in W energy distribution (from D⁺ decay) have edges

$$E_{on}^{\pm} = \frac{\sqrt{s}}{2M_{+}} \left(E^{rest} \pm \beta_{+} |\vec{p}|_{W}^{rest} \right)$$

which lead to kinks in muon energy distributions

$$\varepsilon_k^{\pm} \equiv E_\mu^{(\pm)} = \frac{E_W^{(-)} \pm \sqrt{(E_W^{(-)})^2 - M_W^2}}{2}$$

- between these kinks distribution is approximately flat
- the positions of the upper edge of the di-jet (W) energy distribution and the lower kink in the muon energy distribution give two equations to determine M_n and M+

Kinks and M_{D} and M_{\downarrow} determination

Either of two edges in E(W) or in E(muon) distributions can be used to determine M_D and M+
 However, for certain kinematics edges either in E(W) or in E(mu) can overlap

Kinks and M_{D} and M_{\downarrow} determination

Either of two edges in E(W) or in E(muon) distributions can be used to determine M_D and M+
 However, for certain kinematics edges either in E(W) or in E(mu) can overlap

Important point: the edges in E(W) and E(muon) never overlap simultaneously: if distance between edges in E(W) distribution is small, the distance between edges in E(mu)

■ is maximal and vice versa – so the M_D and M+ can always be determined

DM spin determination

- The angular W-boson distribution (either for real or virtual W) is found to be very important descriminator between DM spin as well as the main BG
- The shape of angular W-boson distribution is the same for two benchmarks for DM of the same spins
- The $\cos \theta_W$ distribution for SDM is the most distinct one

Signal vs BG analysis

	SDM				FDM			
	S	В	S/B	α	S	В	S/B	α
No cuts	2098	332588	0.006	3.63	17962	334254	0.054	30.27
$M_{miss} > 170$	2095	83143	0.025	7.18	17922	84810	0.211	55.92
$E_{jj} < 200$	2094	67130	0.031	7.96	17917	68796	0.260	60.84
$ \cos heta_{jj} < 0.9$	2046	29526	0.069	11.52	15993	31038	0.515	73.75
$ \cos heta_{\mu} < 0.9$	1947	24306	0.081	12.02	14893	25766	0.578	73.86

BP1 cut flow

BP2	cut	flow
	~~~~	

	SDM				FDM			
	S	В	S/B	$\alpha$	S	В	S/B	$\alpha$
No cuts	1370	284290	0.005	2.56	8138	284273	0.029	15.05
$M_{miss} > 170$	1370	39323	0.0349	6.79	8136	39307	0.207	37.35
$E_{jj} < 200$	1369	36177	0.0379	7.06	8123	36161	0.225	38.60
$ \cos \theta_{jj}  < 0.9$	1360	18647	0.0730	9.62	7815	18634	0.419	48.06
$ \cos  heta_{\mu}  < 0.9$	1326	14398	0.0922	10.58	7420	14386	0.516	50.25





Determination of DM properties at future e+e- colliders

#### Signal vs BG analysis





#### **Mass determination**





## **Spin discrimination**

	$\mathcal{L}_{int}$ to differentiate at 95% CL $/fb^{-1}$					
	Shape only		Shape and cross-section			
Assumed nature	SDM	FDM	SDM	FDM		
BP1	974.9	30.08	1.9	3.4		
BP2	2320.2	117.9	9.6	13.2		

We assume that the mass of the DM is precisely known: a more complete treatment would involve a simultaneous fit of mass and spin.

Events are generated with the model assigned to "Assumed nature", before statistical comparison with the alternative model is conducted.

We perform the analysis for two cases:

1) using only the shape: signal strength becomes a nuisance parameter  $\mu$ 

2 ) using the signal strength predicted by the specific model realisations.

we present the luminosity required to exclude a given hypothesis at the expected 95% CL



## **Conclusions and Outlook**

- Future e⁺e⁻ colliders has unique power to determine the properties of DM
- Two minimal models with DM spin  $\frac{1}{2}$  and 0 as an example of the case study
- Kinks and edges in W and charged lepton distributions:

are very complementary since the edges in E(W) and E(mu) never overlap simultaneously, so the  $M_D$  and M+ can always be determined

- Powerful kinematical variables are explored: E(mu), angular distribution of W, missing mass which allows to
  - discover 100 GeV FDM (SDM) with the few (hundered) inverse fb luminosity
  - determine mass of DM with up to a percent accuracy
  - discriminate DM spin
- Next steps
  - explore bigger theory space (vector DM case) and more generic parameter space



# Thank you!



# **Backup slides**



It is convenient to use the cross section for SM process

$$\sigma_0 \equiv \sigma(e^+e^- \to \gamma \to \mu^+\mu^-) = 4\pi\alpha^2/3s$$

as a normalizer for the cross sections of the  $e^+e^- \rightarrow D^+D^-$  processes under study. For  $\gamma$ -factors and velocities of  $D^+$ ,

$$\gamma_{+} = \frac{\sqrt{s}}{2M_{+}}, \qquad \beta_{+} = \sqrt{1 - 4M_{+}^2/s}$$

the QED cross section of  $e^+e^- \rightarrow D^+D^-$  process from the squared amplitude with the photon exchange only is given by

$$\sigma_{\gamma\gamma} = \begin{cases} \sigma_0 \beta_+ \left[ 1 + \frac{2M_+^2}{s} \right] & \text{if } s_D = \frac{1}{2} \\ \sigma_0 \frac{\beta_+^3}{4} & \text{if } s_D = 0 \end{cases},$$

while the total cross section is given by

$$\sigma = \sigma_{\gamma\gamma} + \sigma_{\gamma Z} + \sigma_{Z Z} = \sigma_{\gamma\gamma} \left[ 1 + \frac{\kappa_{\gamma Z}}{1 - \frac{M_Z^2}{s}} + \frac{\kappa_{Z Z}}{\left(1 - \frac{M_Z^2}{s}\right)^2} \right] ,$$









