

www.cea.fr

High-Field Magnets R&D in France Status update

E. Rochepault With inputs from:

CEA Colleagues CERN colleagues PSI and EPFL colleagues

2nd FCC-France Workshop / January 20-21 2021

High Field 16T Nb3Sn magnet development

- CEA/CERN strategy for FCC-hh 16T Magnets:
 - Quadrupole conceptual design finalized
 - CEA/CERN Dipole Magnet strategy towards 16 T
- CEA carrying parallel R&D programs
- CEA involved in many collaborations

Powered samples

Subscales

demo

e

F2D2 Short model

Grading + Flared-ends + Aperture = 16 T

DEVELOPMENT PYRAMID

Non-powered samples

der

MY750

Mix 121

+ Aperture = 16 T

DEVELOPMENT PYRAMID

CEA R2D2 – DETAILED DESIGN ONGOING

- Detailed CAD design ongoing (drawings for production)
- → Coil components + winding/heat treatment for end Nov.
- \rightarrow Splice tooling + structure for end Dec.
- \rightarrow Impregnation tooling for beginning of 2022
- \rightarrow Other minor tooling (handling, assembly...) for spring 2022

MOCKUPS FOR EXTERNAL SPLICES

- Test of process for the assembly of external splice
- 3D printed parts + SCM-11T cable
- No show-stopper identified
- Feedback for the detailed design
- Before impregnation

Cea SMC-11T COIL FINALIZED!

1st Nb₃Sn coil entirely manufactured at Saclay since 10 years!

Cea SMC-11T COIL FINALIZED!

High Field 20T HTS magnet development

Courtesy T. Lecrevisse – CEA Paris-Saclay

REBCO Conductor performance update

 10^{4}

041118 1024x743 PAL.png

[1] Molodyk. A. et al 2021 Scientific Reports vol. 11. 2084 [2] J D Weiss et al 2020 Supercond. Sci. Technol. 33 044001

Development proposal

- Same dimension as Eucard 1 standalone magnet
- Preliminary design
- Update of the tape performance to <u>Molodyk. A.</u> <u>et al 2021 Scientific Reports vol. 11. 2084</u>

Only an idea and some quick numbers

Advantages of this approach :

- "Lower" risks/cost and "short time" developments
- ► Change of central coil : aperture
- ► Adapt the winding to the studies (R_c. I_c...)

@ 4.2 K : 3600 A (j_e of 1095 A/mm²)
 → 20.1 T (%LL : 60)
 SS limit : 6000 A (j_e of 1825 A/mm²)
 → 33.0 T

@ 20 K : 2900 A (j_e of 882 A/mm²) → 16.4 T (%LL :58.6) <u>SS limit</u> : 4950 A (j_e of 1505 A/mm²) → 27.4 T

20 K working might lower exploitation cost (savings has to be evaluated) or simplify the cryogenics

Global Approach in 5 phases

Phase 1 : preliminary work	 low cost + medium risks Development of concepts and technologies
Phase 2 : Subscale model w/o aperture	 medium cost + high risks 8 T+ Subscale model
Phase 3 : Subscale magnet w/o aperture	 high cost + low risk 16+ T demonstrator
Phase 4 : Subscale model with aperture + tests	 medium cost + high risk central coil with aperture
<u>Phase 5 :</u> Subscale magnet with aperture + tests	 low risk + high cost 16 T+ demonstrator

First collaboration : phase 1 to 3 : 5 years Second collaboration : phase 4 and 5 : 3 more years

Dhasa	Milestone (M) or Deliverable (D)		Year							
Phase			1	2	3	4	5	6	7	8
1 : Preliminary Work										
	M1	Critical parts identification & development plan								
	M2	Quench Mock-up design and conductor choice								
	M3	Test station setup ready								
	M4	Quench mockup ready for tests								
	D1	Test report on quench mockup								
2 : Subscale model w/o aperture										
	M5	Subscale full design								
	M6	Winding and assembly procedure validated								
	M7	Subscale model ready for tests								
	D2	Subscale model tests analysis report								
3 : Subscale magnet w/o aperture										
	M8	Magnet w/o aperture full scale design								
	M9	Dummy winding and assembly done								
	M10	Subscale magnet w/o aperture ready for tests								
	D3	Subscale magnet w/o aperture test and analysis report								
4: Subscale model with aperture + tests										
	M11	Design update for magnet with aperture								
	M12	Central coil with aperture tehnology choice								
	M13	Subscale dummy central coil fabrication								
	M14	subscale model with aperture ready for tests								
	D4	Subscale model with aperture tests report								
5: full scale with aperture + tests										
	M15	Design update for full scale magnet with aperture								
	M16	subscale dummy central coil fabrication								
	M17	Subscale magnet with aperture ready for tests								
	D5	Subscale magnet with aperture tests report								

• CEA/CERN strategy for 16T Nb3Sn Magnets:

- SMC fabrication done
- 12 T R2D2 Demonstrator: 1st drawings for fabrication
- 16 T F2D2 Demonstrator: future agreement in discussion

- CEA/CERN strategy for 20T HTS Magnets:
 - Relying on fast turn-over / reduced-risk subscales
 - Plan in 5 phases :

phases 1-3 : 5 years, future agreement in discussion phases 4-5 : +3 years, depending on the results