DE LA RECHERCHE À L'INDUSTRIE

High-Field Magnets R&D in France Status update

E. Rochepault

With inputs from: CEA Colleagues

CERN colleagues

PSI and EPFL colleagues

2nd FCC-France Workshop / January 20-21 2021

www.cea.fr

High Field 16T Nb3Sn magnet development

Courtesy T. Lecrevisse – CEA Paris-Saclay

TAKE-AWAY MESSAGES FROM LAST PRESENTATION

- CEA/CERN strategy for FCC-hh 16T Magnets:
 - Quadrupole conceptual design finalized
 - CEA/CERN Dipole Magnet strategy towards 16 T
- CEA carrying parallel R&D programs:
 - Winding → grading
 - Junctions → grading
 - Thermo-mechanics during HT → Nb₃Sn performances
 - Electrical insulation → high voltages
 - Mechanical structures → high stresses
- CEA involved in many collaborations

months

6-12

vears

4 years

7 years

Non-powered samples

Powered samples

Subscales

12-14 T demo

16 demo

Non-powered samples

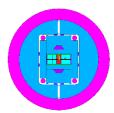
Powered samples

Subscales

12-14 T demo

> 16 T demo

F2D2 Short model


Non-powered samples

Powered samples

Subscales

12-14 T demo

FD Sub-scale

Grading + Flaredends = 12-14 T

F2D2 Short model

Non-powered samples

Powered samples

Subscales

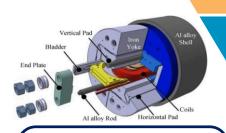
R2D2 Demonstrator

Grading = 12 T

12-14 T demo

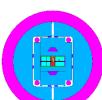
FD Sub-scale

Grading + Flaredends = **12-14 T**


F2D2 Short model

Non-powered samples

Powered samples


SMC Racetrack

State of the art coil fabrication = 12 T

Subscales

12-14 T demo

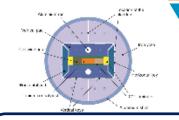
R2D2 Demonstrator

Grading = 12 T

FD Sub-scale

Grading + Flaredends = 12-14 T

F2D2 Short model


Non-powered samples ...

Powered samples

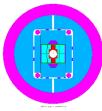
Subscales

R2D2 Demonstrator

Grading = 12 T

SMC Racetrack

State of the art coil fabrication = 12 T


12-14 T demo

FD Sub-scale

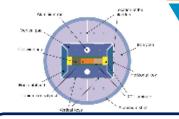
Grading + Flaredends = **12-14 T**

F2D2 Short model

CCCC

DEVELOPMENT PYRAMID

Non-powered samples ...



Powered 19 199 (1992) samples

Subscales

R2D2 Demonstrator

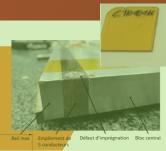
Grading = 12 T

State of the art coil fabrication = 12 T

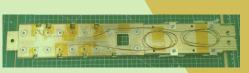

12-14 T demo

FD Sub-scale

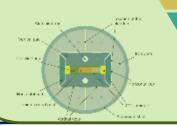
Grading + Flaredends = **12-14 T**


F2D2 Short model





Non-powered samples ...



Powered samples

Subscales

R2D2 Demonstrator

Grading = 12 T

SMC Racetrack

State of the art coil fabrication = 12 T

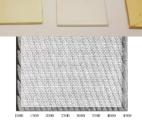
12-14 T demo

Current Agreement

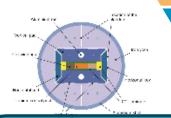
ends = 12-14 T

F2D2 Short model

CC2


DEVELOPMENT PYRAMID

Non-powered samples ...



Powered 100 (192.5) samples

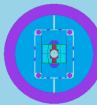
Subscales


R2D2 Demonstrator

Grading = 12 T

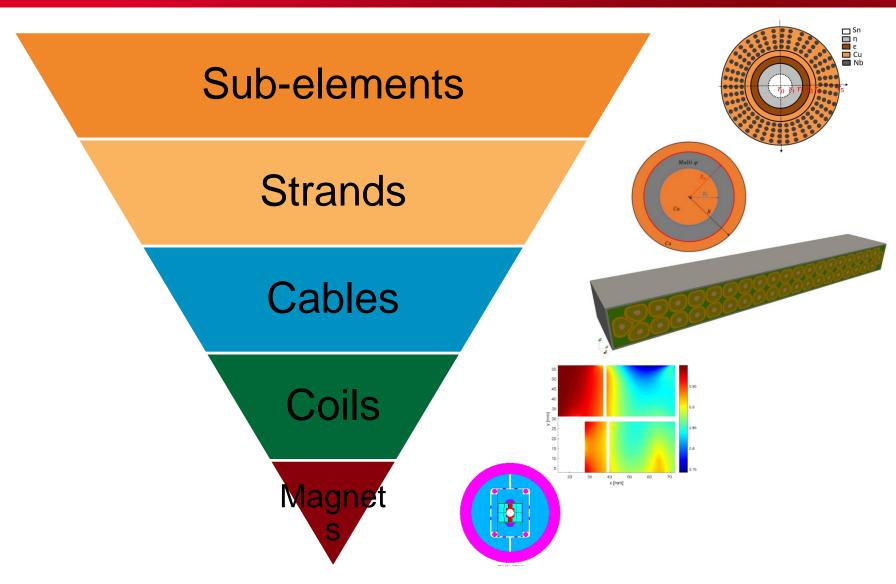
SMC Racetrack

State of the art coil fabrication = 12 T


12-14 T demo

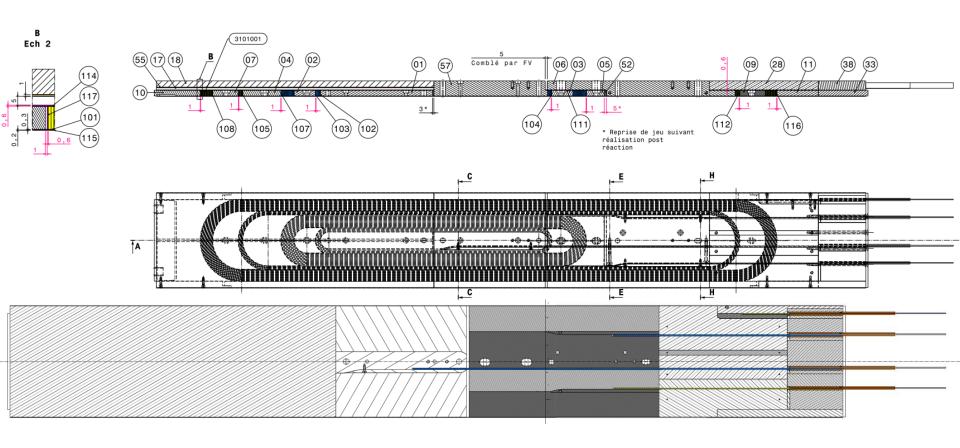
FD Sub-scale

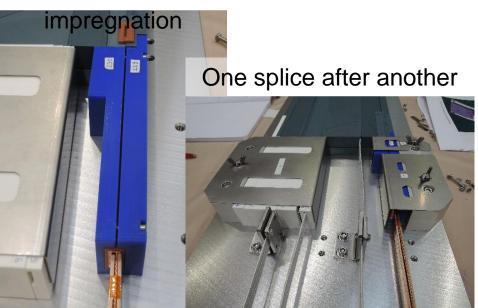
Grading + Flaredends = **12-14 T**

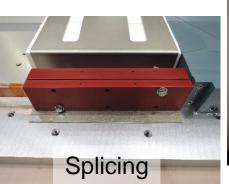

F2D2 Short model

Grading + Flared-ends + **Aperture = 16 T**

Future Agreement

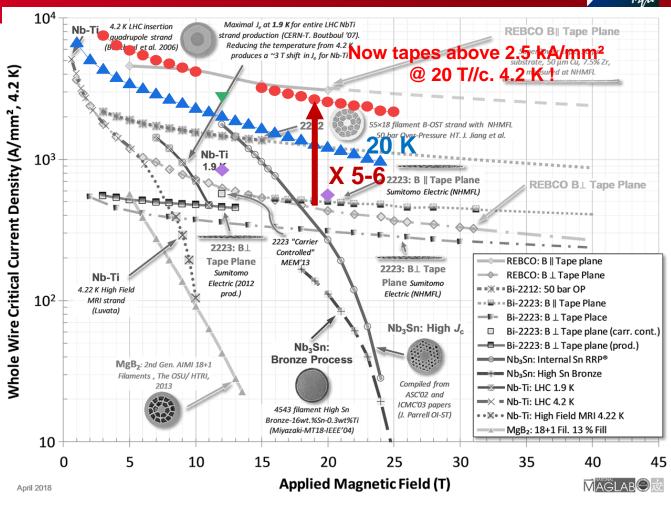



- Detailed CAD design ongoing (drawings for production)
- → Coil components + winding/heat treatment for end Nov.
- → Splice tooling + structure for end Dec.
- → Impregnation tooling for beginning of 2022
- → Other minor tooling (handling, assembly...) for spring 2022


- Test of process for the assembly of external splice
- 3D printed parts + SCM-11T cable
- No show-stopper identified
- Feedback for the detailed design

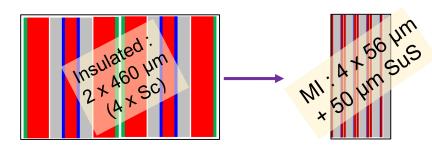
Before

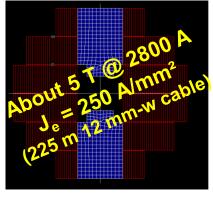
High Field 20T HTS magnet development

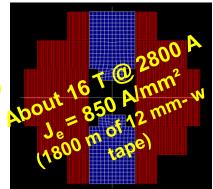

Courtesy T. Lecrevisse – CEA Paris-Saclay

REBCO Conductor performance update

SuperOx 4.2 K B//c [1]
SuperOx 20 K B//c [1]
SuperPower 4.2 K B//c [2]
SuperPower 4.2 K CORC [2]


https://nationalmaglab.org/images/magnet_development/asc/plots/Je_vs_B-041118_1024x743_PAL.png


Development proposal



- **▶** Same dimension as Eucard 1 standalone magnet
- Preliminary design
- ► Update of the tape performance to Molodyk. A. et al 2021 Scientific Reports vol. 11. 2084

Only an idea and some quick numbers

Advantages of this approach:

- "Lower" risks/cost and "short time" developments
- Change of central coil : aperture
- Adapt the winding to the studies (R_c. I_c...)

@ 4.2 K : 3600 A (j_e of 1095 A/mm²)

→ **20.1 T** (%LL: 60)

SS limit: 6000 A (j_e of 1825 A/mm²)

→ 33.0 T

@ 20 K : 2900 A (j_e of 882 A/mm²)

→ **16.4 T** (%LL :58.6)

SS limit: 4950 A (j_e of 1505 A/mm²)

→ 27.4 T

20 K working might lower exploitation cost (savings has to be evaluated) or simplify the cryogenics

Global Approach in 5 phases

Phase 1: preliminary work

- low cost + medium risks
- · Development of concepts and technologies

Phase 2:

Subscale model w/o aperture

- medium cost + high risks
- 8 T+ Subscale model

Phase 3:

Subscale magnet w/o aperture

- high cost + low risk
- 16+ T demonstrator

Phase 4:

Subscale model with aperture + tests

- medium cost + high risk
- · central coil with aperture

Phase 5:

Subscale magnet with aperture + tests

- low risk + high cost
- 16 T+ demonstrator

Global Approach in 5 phases

First collaboration: phase 1 to 3:5 years

Second collaboration: phase 4 and 5:3 more years

Phase		Milestone (M) or Deliverable (D)						Ye	ar				
Pilase	Milestone (M) of Deliverable (D)			2		3	4		5	6		7	8
	M1	Critical parts identification & development plan											
1 : Preliminary	M2	Quench Mock-up design and conductor choice											
Work	М3	Test station setup ready											
	M4	Quench mockup ready for tests											
	D1	Test report on quench mockup		ш									
2 : Subscale model w/o aperture	M5	Subscale full design											
	M6	Winding and assembly procedure validated											
	M7	Subscale model ready for tests											
	D2	Subscale model tests analysis report											
3 : Subscale magnet w/o aperture	M8	Magnet w/o aperture full scale design											
	М9	Dummy winding and assembly done											
	M10	Subscale magnet w/o aperture ready for tests											
	D3	Subscale magnet w/o aperture test and analysis report											
4: Subscale model with aperture + tests	M11	Design update for magnet with aperture											
	M12	Central coil with aperture tehnology choice											
	M13	Subscale dummy central coil fabrication											
	M14	subscale model with aperture ready for tests											
	D4	Subscale model with aperture tests report											
	<i>D4</i>	Subscale model with aperture tests report			+								
	M15	Design update for full scale magnet with aperture											
5: full scale with aperture + tests	M16	subscale dummy central coil fabrication											
	M17	Subscale magnet with aperture ready for tests											
	D5	Subscale magnet with aperture tests report											

CONCLUSIONS

CEA/CERN strategy for FCC-hh 16T Magnets:

- Quadrupole conceptual design finalized
- CEA/CERN Dipole Magnet strategy
- Small Coil fabrication ongoing
- > 12 T R2D2 Demonstrator: detailed design ongoing
- > 16 T F2D2 Demonstrator: conceptual design proposed

CEA carrying parallel R&D programs:

- Winding → grading
- Junctions → grading
- Thermo-mechanics during HT → Nb₃Sn performances
- Electrical insulation → high voltages
- Mechanical structures → high stresses

CEA involved in many collaborations, for instance:

- European institutes: CERN, EPFL-SPC, PSI, ETHZ...
- French universities: LMT-ENS Paris-Saclay