
1

DIRAC – Grid solution for the
LHCb community

A.Tsaregorodtsev,

CPPM-IN2P3-CNRS, Marseille

20 October 2009, Webinaire IN2P3

2

Outline

  Specific issues of large Grid Communities

  DIRAC:

 Framework

 WMS with Pilot Jobs

 Security aspects of the model

 User interfaces

  LHCb extensions to DIRAC

  Conclusion

3

HEP applications

  HEP experiments collect unprecedented
volumes of data to be processed on large
amount of geographically distributed
computing resources

  10s of PBytes of data per year

  10s of thousands CPUs in 100s of centers

  1000s of users from 100s of institutions

  However, other application domains are
quickly approaching these scales

4

Large VO issues

  Large user communities (Virtual
Organizations) have specific problems

 Dealing with heterogeneous resources

•  Various computing clusters, grids, etc

 Dealing with the intracommunity workload

management

•  User group quotas and priorities

•  Priorities of different activities

 Dealing with a variety of applications

•  Massive data productions

•  Individual user applications, etc

5

General problems

  Overcome deficiencies of the standard grid
middleware

  Inefficiencies, failures

•  Production managers can afford that, users can not

 Lacking specific functionality

  Alleviate the excessive burden from sites –
resource providers – in supporting multiple VOs

 Avoid complex VO specific configuration on sites

 Avoid VO specific services on sites

6

VO solutions

  The complexity of managing the VO workload
resulted in specific software layer on top of the
standard grid middleware. Among the LHC
experiments

 AliEn in Alice

 PanDA in Atlas

 GlideIn WMS in CMS

 DIRAC in LHCb

DIRAC Project

7

DIRAC Community Grid Solution

  DIRAC is a distributed data production and
analysis system used by the LHCb
experiment

  Includes workload and data management

components

 Was developed originally for the MC data

production tasks

 Extended to data processing and user analysis

 The goal was:

•  Integrate all the heterogeneous computing resources
available to LHCb

•  Minimize human intervention at LHCb sites

8

DIRAC: complete chain

9

  DIRAC is covering all the LHCb needs in the distributed
data processing

  Data export from the experiment pit to CERN off-line storage

  Automatic data distribution to Tier-1 centers

  Automatic creation and submission of the data reconstruction jobs

  Automatic distribution of the analysis data

  Full management of the MC data production

  Full support for the user analysis jobs

  Different subsystems built in the same framework

  Reuse of technical solutions in different subsystems

  A concerted team of developers sharing experience

DIRAC Framework

  Services oriented architecture

 DIRAC systems consist of services, light

distributed agents and client tools

  All the communications between the

distributed components are secure

 DISET custom client/service protocol

•  Control and data communications

 X509, GSI security standards

 Fine grained authorization rules

•  Per individual user FQAN

•  Per service interface method

•  Per job

10

DIRAC base services

  Redundant Configuration  

Service

  Provides service discovery and  

setup parameters for all the  
DIRAC components

  Full featured proxy  
management system

  Proxy storage and renewal  

mechanism

  Support for multiuser pilot jobs

  System Logging service

  Collect essential error messages from all the components

  Monitoring service

  Monitor the service and agents behavior

11

12

DIRAC development environment

  Python is the main development language

 Fast prototyping/development cycle

 Platform independence

  MySQL database for the main services

 ORACLE database backend for the LHCb

Metadata Catalog

  Modular architecture allowing an easy

customization for the needs of a particular
community

 Simple framework for building custom services

and agents

Workload Management

13

14

Pilot Jobs in a nutshell

  Pilot agents are deployed on the Worker

Nodes as regular jobs using the standard
grid scheduling mechanism

  Form a distributed Workload

Management system

  Reserve the resource for immediate use

  Once started on the WN, the pilot agent
performs some checks of the
environment

  Measures the CPU benchmark, disk and

memory space

  Installs the application software

  If the WN is OK the user job is pulled
from the central DIRAC Task Queue and
executed

  Terminate gracefully if no work is

available

DIRAC WMS

1
5

  Jobs are submitted to the DIRAC
Central Task Queue with  
credentials of their owner  
(VOMS proxy)

  Pilot Jobs are submitted by 
specific Directors to a Grid WMS 
with credentials of a user with a
special Pilot role

  The Pilot Job fetches the  
user job and the job ownerʼs
proxy

  The User Job is executed  
with its ownerʼs proxy used  
to access SE, catalogs, etc

User Job efficiency

  Improved visible reliability due to pilot agents

 ~96% efficiency for DIRAC jobs vs 70-90%
efficiency for the WLCG jobs

  If some resources are failing, it is just seen as a
reduced pool of resources for the users

  An excess of Pilot Jobs over User Jobs just to
cover inefficiencies of Computing Resources or
Grid middleware

  it is normal that computing resources are failing but

  it is not normal that users are suffering from that

16

Workload optimization

  Pilot Agents work in an optimized
ʻFilling Modeʼ

  Multiple jobs can run in the same CPU slot

  Significant performance gains for short,

high priority tasks

  Also reduces load on LCG since fewer

pilots are submitted

  Needs reliable tools to estimate remaining

time in the queue

  Considering also agents in a

“preemption” mode

  Low priority task can be preempted by a

high priority tasks

•  Low priority, e.g. MC, jobs behave as

resource reservation for analysis jobs

17

WMS: applying VO policies

1
8

  In DIRAC both User and Production  
jobs are treated by the same WMS

  This allows to apply efficiently  
policies for the whole VO

  Assigning Job Priorities for different  

groups and activities

  Static group priorities are used currently

  More powerful scheduler can be plugged in

●  demonstrated with MAUI scheduler

  The VO policies application in the central Task Queue dictates

the use of Multiuser Pilot Agents

  Do not know apriori whose job has the highest priority at the moment of the

user job matching

  DIRAC fully supports this mode of operation

  Multiuser Pilots Jobs submitted with a special “pilot” VOMS role

  Using glexec on the WNs to track the identity of the payload owner

19

Security issues of the model

  The VO WMS must be as

secure as the basic grid
middleware

  User job submissions using grid

security standards: GSI

  Secure proxy storage in the WMS

repository

  The VO WMS takes over the

user proxy renewal

  Limited user proxy

  Limited number of proxy

retrievals per pilot

  Sites still retain the full right to

control which individuals are
accessing their resources

  SCAS/glexec facility to authorize

user workload execution on the
worker node

20

Advantages for site resources providers

  No need for a variety of local batch queues per VO

  One long queue per VO would be sufficient

  24-48 hours queue is a reasonable compromise

•  Site maintenance requirements

  Reduced number of grid jobs

  No need for specific VO configuration and
accounting on sites

  Priorities for various VO groups, activities

  User level accounting is optional

  In the whole it can lower the site entry threshold

  Especially useful for newcomer sites

WMS: using heterogeneous resources

  Including resources in different grids 
and standalone clusters is simple with 
Pilot Jobs

  Needs a specialized Pilot  

Director per resource type

  Demonstrated with NDG  

and EELA grid sites

  Users just see new sites  

appearing in the job  
monitoring

  Other resources soon to be included

  LHCb Online Farm (4K cores, no batch system)

  Commercial computing clouds (e.g. Amazon EC2)

21

WMS performance

  DIRAC performance measured in the recent
production and FESTʼ09 runs

  Up to 25K concurrent jobs in ~120 distinct sites

  One mid-range central server hosting DIRAC services

  Further optimizations to increase capacity are possible

●  Hardware, database optimizations, service load balancing, etc

22

User Interfaces

23

DIRAC user interfaces

  Easy client installation for various platforms (Linux,

MacOS)

  Includes security components

  JDL notation for job description

  Simplified with respect to the « standard » JDL

  Command line tools

  à la gLite UI commands

  e.g. dirac-wms-job-submit

  Extensive Python API for all the tasks

  Job creation and manipulation, results retrieval

•  Possibility to use complex workflow templates

  Data operations, catalog inspection

  Used by GANGA user front-end

24

25

Example job submission

from DIRAC.Interfaces.API.Dirac import Dirac
from Extensions.LHCb.API.LHCbJob import LHCbJob
…
myJob = LHCbJob()
myJob.setCPUTime(50000)
myJob.setSystemConfig('slc4_ia32_gcc34')
myJob.setApplication('Brunel','v32r3p1','RealDataDst200Evts.opts','LogFileName.log')
myJob.setName('DIRAC3-Job')
myJob.setInputData(['/lhcb/data/CCRC08/RAW/LHCb/CCRC/420157/420157_0000098813.raw'])
#myJob.setDestination('LCG.CERN.ch')
dirac = Dirac()
jobID = dirac.submit(myJob)
…

dirac.status(<JOBID>)
dirac.parameters(<JOBID>)
dirac.loggingInfo(<JOBID>)
…

dirac.getOutputSandbox(<JOBID>)

DIRAC: Secure Web Portal

  Web portal with intuitive desktop application like
interface

  Ajax, Pylons, ExtJS Javascript library

  Monitoring and control of all activities

  User job monitoring and manipulation

  Data production controls

  DIRAC Systems configuration

  Secure access

  Standard grid certificates

  Fine grained authorization rules

26

Web Portal: example interfaces

27

Web Portal: user tasks

  Data discovery, job monitoring

  Job submission through  

the Web Portal

  Full GSI security

  Sandboxes uploading 

and downloading

•  Difficult for bulky data files though

  Generic Job Launchpad panel 
exists in the basic DIRAC Web Portal

•  Can be useful for newcomers and occasional users

  Specific application Web Portals can be derived

  Community Application Servers

•  All the grid computational tasks steered on the web

  VO “formation” DIRAC instance to be deployed at CC/IN2P3

28

LHCb and other extensions

29

DIRAC LHCb extensions

  High level LHCb systems are built in the
same DIRAC framework

 Collaborating services and agents

 Web based monitoring and controls

 Detailed authorization rules

30

Production Management System

3
1

  Production Management built  
on top of the DIRAC WMS  
and DMS

  Data requests formulated by users  

are processed and monitored  
using Web based tools

  Automatic data reconstruction jobs  
creation and submission according  
to predefined scenarios

  Interfaced to the LHCb
Bookkeeping Database

  Built using the DISET framework

Request Management system

  A Request Management  

System (RMS) to accept and  
execute asynchronously any  
kind of operation that can fail

  Data upload and registration

  Job status and parameter reports

  Request are collected by  
RMS instances on VO-boxes at 7 Tier-1 sites

  Extra redundancy in VO-box availability

  Requests are forwarded to the central Request
Database

  For keeping track of the pending requests

  For efficient bulk request execution

32

Data Management System

  All the Data Distribution  

operations

  Pit to CERN transfers

  T0-T1 transfers

  T1-T1 transfers

  Based on the Request and  
Production Management  
Systems

  Automatic transfer scheduling

  Full monitoring of ongoing  

operations

  Using FTS for bulk data transfers

  Full failure recovery

  Comprehensive checks of data integrity in SEs and File Catalogs

33

LHCb Web: Bookkeeping page

34

  Interface to the LHCb Metadata Catalog

 Part of the LHCb DIRAC Web Portal

Support for MPI Jobs

  MPI Service developed 
for applications in the 
EELA Grid

  Astrophysics, BioMed, 

Seismology applications

  No special MPI support on 

sites

•  MPI software installed by Pilot Jobs

  MPI ring usage optimization

•  Ring reuse for multiple jobs

 Lower load on the gLite WMS

•  Variable ring sizes for different jobs

35

36

Conclusions

  DIRAC project provides a secure framework for

building distributed computing (grid) system

  The WMS with Pilot Jobs addresses (if not

solves) multiple problems that large VOs are
facing:

  Heterogeneity of computing resources

  VO policies, task prioritization

  Resources and middleware inefficiencies

  The DIRAC Framework can be used to build
application specific services and portals

  Complex LHCb Production Management systems

  Examples exist also outside the HEP domain

http://dirac.cern.ch

Backup slides

37

DIRAC WMS components

38

 VO policies application: two ways

39

  Define VO policies on each of participating sites

 Overly complicated to define and to maintain on

hundreds of sites

•  Failed so far to provide efficient tools to help this task

  Imprecise due to latencies in local queues

  Apply VO policies in the central Task Queue

 Easy to maintain in just one place

 Precise due to late scheduling

•  Pilot is picking up the highest priority job from the central Task
Queue for immediate execution

 Needs Multiuser Pilot Jobs

•  Pilot Job capable of executing any userʼs job

40

Job Prioritization and VO Policies

  The Matcher service assigns jobs to the

requirements presented by Agents that have
captured resources

  Highest priority job dispatched first

  Priority Calculator

  Static user and group priorities

  Standard batch system components, e.g. Maui scheduler

  Others, e.g. “economy models”

DIRAC overlay network

  DIRAC pilots form an 
overlay network  
hiding the variety 
of underlying 
resources

  A way for grid 
interoperability for 
a given Community

  Needs specific Agent  
Director per resource type

  From the user perspective 
all the resources are seen as a single large “batch system”

41

Grid A
 Grid B

User Community

(WLCG)
 (NDG)

