softWAre for Dark matter ExpeRiments with Skippers

WADERS Framework

pronounced [v AI d e r s]

gitlab repo: https://gitlab.in2p3.fr/damicm/pysimdamicm

official web for documentation: https://ncastell.web.cern.ch/ncastell/

DQM Compton web: https://gev.uchicago.edu/compton/ (documentation for analysis)

Núria Castelló-Mor

11-13 January 2021 Online

https://indico.in2p3.fr/event/22866/

the current name **pysimdamicm** became outdated!

Do you like WADERS? Some alternatives

PROMISE	Python sofwaRe fOr dark Matter In SkippErs
SCAN	S kipper C CDs An alysis
PARANOIa	P ython softw A re fo R A nalysis of sk I ppers
PyDAMICM	
PARKER	P ython A nalysis fo R s K ipp ER s
SKRAP	SK ippe R A nalysis in P ython
ADAMS	Analysis for DA rk M atter in S kippers

Do not like it suggestion?

Mariangela, Danielle, Rocio, Jordi, Carly thanks for your suggestions

the current name **pysimdamicm** became outdated!

Do you like WADERS? Some alternatives

PROMISE	Python sofwaRe fOr dark Matter In SkippErs
SCAN	Skipper CCDs Analysis
PARANOIa	P ython softw A re fo R A nalysis of sk I ppers
PyDAMICM	
PARKER	P ython A nalysis fo R s K ipp ER s
SKRAP	SK ippe R A nalysis in P ython
ADAMS	Analysis for DArk Matter in Skippers

Do not like it suggestion?

Mariangela, Danielle, Rocio, Jordi, Carly thanks for your suggestions

What is WADERS?

A framework which allows to post process data from skipper images [setup independent]

Contraction of the second

What is WADERS?

Is a framework

Plug-in ability

this infrastructure

Allows to create new algorithms

to process skipper images within

Infraestructure

simulations and reconstruction of skippper images RawData class (input file encapsulation) Config class (configuration) Process Manager DQM Manager

Library of processes

Collection of predefined algorithms (processes) to process the data CompressSkipperProcess PedestalSubtractProcess CalibrationProcess FitDarkCurrentProcess FitCalibrationConstant RnvsNskipsPlot FFTNoisePlot ChargeLossPlot SignalPatterRecognition ClusterFinder

(some processes from Paolo's CCDTestPython)

Outlook of WADERS

^[1] new process and/or ME can be added for the user

Outlook of WADERS

DQM Compton web: https://gev.uchicago.edu/compton/ (documentation for analysis)

This framework is built around

the process concept

process: algorithm implementation which accesses, and/or modifies, and/or manipulates, and/or filter some input data, and probably adds some attributes to the original data.

• A process should focus in one, and just one concrete goal

file.

process: algorithm implementation which accesses, and/or modifies, and/or manipulates, and/or filter some input data, and probably adds some attributes to the original data.

• A process should focus in one, and just one concrete goal

Each process is **configurable** at runtime by the user, through a JSON

15 16 "model" 18 "gauss", 19 "A" 20 "B" 0.000886 21 22 23 24 25 26 27 "z_offset" 0.0, "alpha" 0.0000597, "A:um*um;B:1/um;z_offset:um;alpha:pixel/eVee" "units" "fanofactor": 0.12, "active" "ContinuousReadout": 29 30 31 32 33 34 35 36 "pixel_read_time" : 0.001, : "s/pixel", "ampli" 0 "active" "PixelizeSignal": "shift_pixel_in_x" : 0, "shift_pixel_in_y" 37 38 "N_pixels_in_x:pixel;pixel_size_in_x:mm;shift_p 39 "active" 40

Let's see **PedestalSubtractionProcess** as an example

column number

10

20

40

50

row number

Algorithm to estimate and subtract the pedestal from an image.

pedestal subtracted image

pull of process and ME analysis process digitilized process Monitor Element

Let's see **PedestalSubtractionProcess** as an example

Algorithm to estimate and subtract the pedestal from an image.

The behaviour can be changed depending on the configured options

- use overscan or full image or just a region of the image
- mask pixels qith q_{ij} > n q_{th}
- estimated by row, or by column, or by both
- estimate by fitting a gaussian, or mean or a median
- for gaussian: estimate the pixels to consider by using MAD or STD
- other general parameters (related to the interactive mode)

Let's see **PedestalSubtractionProcess** as an example

Algorithm to estimate and subtract the pedestal from an image.

The behaviour can be changed depending on the configured options

- use overscan or full image or just a region of the image
- mask pixels qith q_{ii} > n q_{th}
- estimated by row, or by column, or by both
- estimate by fitting a gaussian, or mean or a median
- for gaussian: estimate the pixels to consider by using MAD or STD
- other general parameters (related to the interactive mode)

This algorithm include the posibility to mask some pixels in the selected region before to estimate the pedestal. Given the value n all pixels with

 $q_{ij} > n q_{th}$

Will not be used to estimate the pedestal

pull of process and ME

analysis process digitilized

process

pull of process and ME analysis process digttilized process Monitor Element

Let's see **PedestalSubtractionProcess** as an example

Let's see **PedestalSubtractionProcess** as an example

pull of process and ME

Monito

analysis process digitilized

process

pull of process and ME analysis process digitilized process Monitor Element

Let's see **PedestalSubtractionProcess** as an example

- Algorithm to estimate and subtract the pedestal from an image.
- The behaviour can be changed depending on the configured options
 - use overscan or full image or just a region of the image
 - mask pixels qith q_{ij} > n q_{th}
 - estimated by row, or by column, or by both, or full
 - estimate by fitting a gaussian, or mean or a median
 - for gaussian: estimate the pixels to consider by using MAD or STD
 - other general parameters (related to the interactive mode)

pedestal subtracted image

pull of process and ME analysis process digitilized process Monitor Element

Let's see **PedestalSubtractionProcess** as an example

Algorithm to estimate and subtract the pedestal from an image.

The behaviour can be changed depending on the configured options

- use overscan or full image or just a region of the image
- mask pixels qith q_{ii} > n q_{th}
- estimated by row, or by column, or by both, or full
- estimate by fitting a gaussian, or mean or a median
- for gaussian: estimate the pixels to consider by using MAD or STD
- other general parameters (related to the interactive mode)

Set all options in the input JSON file:

Depending on the working scope, the **processes** are grouped

Abstract Class

DigitizeProcess	<pre>detector response: to digitilize the geant4 monte carlo simulations (which have to be compatible with the one from DAMICG4) pysimdamicm/processes/detector_response.py</pre>	
SKImageProcess	<pre>commissioning: for any [skipper] CCD image pysimdamicm/processes/skipper_comissioning.py</pre>	
SKImageProcess	<pre>analysis: for any [skipper] CCD image pysimdamicm/processes/reconstruction.py pysimdamicm/processes/skipper_analysis.py</pre>	
MEabs	Monitor Element: a plot or quantity as data quality of your data taking pysimdamicm/dqm/me.py	
	Visit the Compton Setup web site https://ncastell.web.cern.ch/ncastell/compton_web_site/ to see the full set of available ME 18	

List of available processes

DigitizeProcess

detector response

Diffusion: PixelizeSignal:	Process to generate the creation of eh pairs and its diffusion Process to group the energy depositions into pixels	
DarkCurrent: ElectronicNoise:	Process to add thermal generaion of eh pairs in the depletion region Process to emulate the electronic noise during readout	
PixelSaturation:	Process to emulate the saturation of one of the color channels of the sensor (which responds at its maximum value). Note that the concequente overflow or blooming is not included	
CreateFitsImage:	Process to create a fits image to be used as DATA (allows to use a blank image as bkg)	10
ContinuousReadout:	lout: Process to mimic the pixel charge loss due to continuous readout	

List of available processes

DigitizeProcess

detector response

Diffusion: PixelizeSignal:	Process to generate the creation of eh pairs and its diffusion Process to group the energy depositions into pixels
DarkCurrent: ElectronicNoise:	Process to add thermal generation of eh pairs in the depletion region Process to emulate the electronic noise during readout
PixelSaturation:	Process to emulate the saturation of one of the color channels of the sensor (which responds at its maximum value). Note that the consecutively overflow or blooming is not included
CreateFitsImage:	Process to create a fits image to be used as DATA (allows to use a blank image as bkg)
ContinuousReadout:	Process to mimic the pixel charge loss due to continuous readout

SKImageProcess

List of available processes

commissioning

ChargeLossPlot:Process to create a set of plots to study charge loss between skipsFFTNoisePlot:Process to do the Fast Fourier Transform of an skipper image
to study its noise in skips and pixels
Process to find the calibration constant (or gain)
by fitting n-consecutive single electron peaks.RNvsNskipsPlot:Process to study the signal-to-noise ratio as a function of N
skips

Mostly to create a set of plots to study skipper CCD images

SKImageProcess

0.4714

Mean

CompressSkipperProcess: PedestalSubtractionProcess:

FitDarkCurrentProcess:

Process to combine all single skips into a single value Process to get the pedestal-subtracted image (pedestal estimation and subtraction) Process to fit λ , μ_{o} , gain, single e⁻ resolution

$$\sum_{k=0}^{\infty} P(n \cdot k | \lambda) imes G(q_{ij}, \mu_0 + (n \cdot k), \sigma_{pix})$$

CalibrationProcess:

[also used in simulations]

SignalPatterRecognition: ClusterFinder:

Process to apply the calibration to signal: convert ADU to \rightarrow e-

Process for the discriminate between signal and noise Process to find clusters sensor

MEabs

List of available processes

Monitor Elements

Go to https://ncastell.web.cern.ch/ncastell/compton_web_site/

MEMeanDCperRow, MEDCslope, MEDCintercept, MESensorMedianperRow, MESensorMADperRow, MEImageMedianperCol, MEImageMADperCol, MEOverscanMedianperRow, MEOverscanMADperRow, MEPedestalMu, MEPedestalSigma, MEMaskedPixels, MESinglePED, MEOverscanPCDMu, MEOverscanPCDSigma, MEFitDC, MEFitDCMu0PerRow, MEFitDCSigmaPerRow, MEFitDCLambdaPerRow, MEFitDCMu0, 23 MEFitDCSigma, MEFitDCLambda, METempShift

In collaboration with the Compton setup group

All processes are well documented

Dedicated documentation for each process can be found

- \rightarrow USING THE EXECUTABLES PROVIDED BY WADERS
 - for a short description

[user@dm ~]\$ psimulCCDimg --json

[user @dm ~] \$ panaSKImg --help

	(venv_analysis) [castello@gev pysimdamicm]\$ psimulCCDimgjson Valid options are:
All processes are well documented	"in_root": "in_dir_path" : Path for <in_root.root_file_name> (by default .) "root_file_name" : ROOT file name of the geant4-based DAMICG4 simulation "out root":</in_root.root_file_name>
Dedicated documentation for each process can be	<pre>"out_dir_path" : Path for the output root file (by default .) "prefix_root_name" : Output file name prefix, the response of the detecto will be sotored as <dir_path>/<prefix_root_name>_<root_file_ "save_ccdimg"="" "store_pixel_info"="" :="" `energy`="" `noise`<="" a="" and="" arrays:="" boolean="" cluster="" each="" for="" format="" if="" image="" in="" independent="" n="" of="" option="" pixel="" pre="" properties="" set,="" store="" the="" to="" two="" with=""></root_file_></prefix_root_name></dir_path></pre>
\rightarrow USING THE EXECUTABLES PROVIDED BY WADER	for the pixel energy of the geant4 simulation and the pixel noise distribution due to dark current and/or electronic noise. (by d "detector_response":
	<pre>"Diridsion": "model" : Use karthick to apply probability distributions to get the nu "A" : Coefficient for the xy dispersion measured by the detector as a function of the depth (by default 216.2) "B" : Coefficient for the xy dispersion measured by the detector as a function of the depth (by default 0.000886) "z_offset" : Starting z-position in the silicon bulk (by default 0.0) </pre>
[user @dm ~]\$ psimulCCDimgjson	"alpha" : Parameter for the second term on the diffusion model, the pro "units" : informative keyword to highlight the units of each process pa "fanofactor" : Fano factor to model e-h pair creation within the silicon bulk (by default 0.12)
	<pre>"ContinuousReadout": "pixel_read_time" : Time to read a pixel in units of seconds (by defaul "units" : informative keyword to highlight the units of each process pa "ampli" : Readout: number of amplifiers used for skipper</pre>
V C C C C C C C C C C	<pre>"mode" : Full-image or cropped-image for intrinsic detector noise simul "darkcurrent" : Dark current value in units of e-/pixel/day (by default "exp_time" : Time for the darkcurrent mesurement in units of days, bein the lambda parameter in the poisson distribution (by default "img_size" : x and y-axis CCD region size. Both noises, dark current an are simulated in a reduced CCD region for computational reas "min_enlarge" : Minimum extra-pixel size when the elongation of the clu "units" : informative keyword to highlight the units of each process pa "active" : Include the detector response and/or reconstruction process "PixelSaturation": "saturation" : Number of ADC units for a saturated pixel (by default 6 "units" : informative keyword to highlight the units of each process pa "active" : Include the detector response and/or reconstruction process "reconstruction": "SignalPatternRecognition": "method" : Algorithm number for cluster finder (by default 1) "threshold" : Minimum pixel charge as signal (by default 15)</pre>

continue ...

All processes are well documente	skip-end ID_SKIP_EN	First skip to start with (for all processes, if a process use an specific starting point include id_skip_start in its scope in the json file). Note that -1 means last value ART
Dedicated documentation for each process can be	row-end ID_ROW_END	First row to start with (for all processes, if a process use an specific starting point include id_row_start in its scope in the json file) First row to start with (for all processes, if a process use an specific starting point include
\rightarrow USING THE EXECUTABLES PROVIDED BY WADEF	col-start ID_COL_ST	Id_row_start in its scope in the json file). Note that -1 means last value ART First col to start with (for all processes, if a process use an specific starting point include
	col-end ID_COL_END	id_col_start in its scope in the json file) First col to start with (for all processes, if a process use an specific starting point include id_col_start in its scope in the json file). Note that -1 means last value
	** Common to all PROCE -s SEQUENCE,sequen	SS ***********************************
	list-processes save-img save-plots display	List all available process names [BOOL] Set to save intermediate images as fits files [BOOL] Set to save plots as eps and pdf files [BOOL] Running in debug mode (all plots will be also display)
	verbose cal CALIBRATION	[BOOL] Report extra information/plots during execution (for all booked processes) Calibration constant to start with (several process has this parameter)
	** For Process Compress func-to-compress FU	sSkipperProcess ***********************************
	** For Process Pedesta method METHOD in-overscan	lSubtractionProcess ***********************************
[user@dm ~]\$ panaSKImghelp	axis AXIS n-sigma-win-fit N_S	Axis in which the overscan should be computed: row/col/both/none IGMA_WIN_FIT Number of sigmas to define the spectral window to fit
	n-sigma-to-mask N_S show-fit	a gaussian to single electron peaks IGMA_TO_MASK Number of sigmas to define the maximum pixel charge to take into account to estimate the pedestal Set to show up several extra plots and information
	<pre>** For Process ChargeLuskip-id-list SKIP_IUskip-id-baseline SK</pre>	ossPlot ************************************
locumentation	·	Index of the single skip image to be used as baseline image

continue ...

All processes are well documented

Dedicated documentation for each process can be found at

- → ONLINE
 - for a more detailed explanation (params, algorithm, examples)

https://ncastell.web.cern.ch/ncastell/pysimdamicm/getting_started.html

https://gev.uchicago.edu/compton/

A gallery of Notebooks on how to use pysimdamicm for analysis:

- How to I: <u>Install</u>
- How to II: Introduction
- How to III: <u>Configuration JSON file</u>
- How to IV: <u>RawData class</u>
- How to V: <u>CompressSkipperProcess class</u>
- How to VI: <u>PedestalSubtractedProcess class</u>
- How to VII: <u>FitDarkCurrentProcess class</u>

Find all notebooks (.html, .ipynb) also within the repository under the folder

pysimdamicm/notebooks/howto/analysis

HOW TO FOR ANALYSIS/COMISSIONIN

What is panaSKImg used for?

Process by Process

- 1. CompressSkipperProcess
- 2. PedestalSubtractionProcess
- 3. FitDarkCurrentProcess
- 3. ChargeLossPlot
- 4. FFTNoisePlot
- 5. RNvsNskipsPlot
- 6. FitCalibrationConstant

gev cluster: How to use it

A PyDAMICM

Search docs

MODULE DOCUMENTATION

Overview

Detector Response Tools

Reconstruction Tools

Process Manager

Utilities

HOW TO INSTALL

Requirements and/or dependences Download

Install

HOW TO FOR SIMULATIONS

How to run psimulCCDimg

Running modes

Configuration JSON file

Output ROOT file

Modes to mimic the Intrinsic Detector Noise

HOW TO FOR ANALYSIS/COMISSIONING

What is panaSKImg used for?

Process by Process

gev cluster: How to use it

How to use it?

WADERS provides two executables

• configured via JSON file and/or command line options

psimulCCDimg: using a Geant4-created input file (ROOT file compatible with DAMICG4's output), simulates the CCD **sensor response** and, emulates the **electronic response** and performs **cluster reconstruction**

It can also provide a CCD image (fits format) to be processes with panaSKImg (as if it was real data).

panaSKImg: using (n) input image file(s) (fits,ROOT,...), performs data analysis (both **commissioning/operational** and high level data **reconstruction**).

- Comissioning: study the linearity with single electron peaks, noise studies, skipcharge losses studies, ...
- Operational: Data Quality Monitor
- High level data: pedestal subtraction, dark current fit, cluster reconstruction, ...

How to use WADERS: Configuration JSON file

WADERS provides two executables

• configured via JSON file and/or command line options

psimulCCDimg: main sections for the configuration JSON file

output: mostly to define the prefix of the output ROOT file
detector_response: define the list of processes and its parameters
reconstruction: define the list of processes and its parameters

The user **has no control over the order** in which the process will be executed (these are internally sorted)

panaSKImg: main sections for the configuration JSON file

input: parameters to define the input image (overscan and prescan regions, active area, number of skip measurements, ...)

process: define the **list of ordered processes** and its parameters

The **user must define the order** of execution of the process. This is done in the JSON file, setting the parameter sequence.

pysimdamicm/json/psimulCCDimg_config_file.json

```
2
                                            deprecated
 4
 5
 6
        "out_root":
.
9
10
            "prefix root name" : "out simulCCDimg",
11
            "store_pixel_info" : 1,
12
            "save CCDimg"
13
14
15
16
                                                 PROCESS SECTION
            "Diffusion":
17
                                              Configurable options
                 "model"
18
                              : "gauss",
19
20
                              : 0.000886,
21
22
23
                              : 0.0,
           П
                              : 0.0000597,
                              : "A:um*um;B:1/um;z_offset:um;alpha:
24
25
26
27
28
29
                 "fanofactor": 0.12,
                 "active"
            "ContinuousReadout"
                 "pixel_read_time" : 0.001,
30
                                     : "s/pixel",
31
                                     : 4,
32
33
34
            "PixelizeSignal":
36
                 "shift_pixel_in_x" : 0,
37
                 "shift pixel in y" : 0,
38
                                      : "N_pixels_in_x:pixel;pixel_
40
41
42
43
44
                             : "cropped-image",
                 "pedestal" : 0.0,
45
46
47
                             : 0.25,
                             : "pedesta:e/pixel;img_size:pixel;min
                 "img_size" : 300,
48
                 "min_enlarge":30,
49
                 "active" : 0
50
```

Output root file naming

out_simulCCDimg_<input_file_name>.root

```
'DarkCurrent":
51
53
                   "mode"
                                     : "cropped-image",
54
                   "darkcurrent" : 0.001,
55
                                      0.33333333333,
56
                                       300,
57
                   "min enlarge"
                                       30,
58
                                       "darkcurrent:e/pixel/day;exp_t
59
60
61
62
63
                   "saturation" : 65535,
64
                                   : "ADC",
65
66
67
68
69
70
              "SignalPatternRecognition":
71
                                  : 1,
                   "threshold" : 15,
74
                                  : "ADC",
75
76
77
78
79
80
                                               : 2,
81
82
83
84
                                               to define
85
86
              "ccd_shape":[1000,4000],
                                                 - CCD size
              "ccd_pixel_size_x":0.015,
"ccd_pixel_size_y":0.015,
87
                                                 - pixel size (and binning)
88
89
              "ccd_thickness":0.675,
                                                 - CCD thickness
90
                                                 - ADC \rightarrow eV
              "e2eV" : 3.77,
"detector_name":"CCDSensor"
91
92
                                                 - mean E to create eh pair
93
                                                 - detector name
94
95
```

units -> ONLY INFORMATIOVE

How to use WADERS: JSON file example for **psimulCCDimg**

pysimdamicm/json/psimulCCDimg_config_file.json

Use "active" to switch on/off a process, the process manager will executed secuentially the list of process internally sorted.

How to use WADERS: JSON file example for panaSKImg

pysimdamicm/json/panaSKImg_config_file.json

"CalibrationProcess": "image":"mean_compressed_pedestal_subtracted", "image":"mean_compressed_pedestal_subtracted", "n sigma win fit":3 "image":"mean_compressed_pedestal_subtracted", "method":"root", "do calibration":true, "n_peaks":2, "n_sigma_fit":2, "mu_gauss":0.0, "lambda poisson":0.05, "binning_size":0.25, "fit options":"QS" "histequ":false, "gray_palette":false "RNvsNskipsPlot": "n_skips_per_block":10, "is blank":false "method" 1. : "mean_compressed_pedestal_subtracted_e" : true, : true, "threshold" : [null,3,4]

How to use WADERS: JSON file example for panaSKImg

113 }

pysimdamicm/json/panaSKImg_config_file.json

Corrections to be applied to data before processing Invert polarity: max \rightarrow min leach_bug \rightarrow for COMPTON setup

"CalibrationProcess": "image":"mean compressed pedestal subtracted", "image":"mean_compressed_pedestal_subtracted", "n_peaks":3, ___ "calibration":5, "image":"mean_compressed_pedestal_subtracted", "method":"root", "n_peaks":2, "n_sigma_fit":2, "mu_gauss":0.0, "sigma_gauss":0.2, "lambda_poisson":0.05, "binning_size":0.25, "fit_options":"QS" "grav palette":false "SignalPatternRecognition": "method" 1, "mean_compressed_pedestal_subtracted_e" : true, : true, "threshold" : [null,3,4]

How to use WADERS: JSON file example for **panaSKImg**

pysimdamicm/json/panaSKImg_config_file.json

		\mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c}	
1 (llinn	aut II .	
2	°ub	put":	
3		llimegell	
4		"Image":	
5		{ Usubanalanalli in	
6		"extensions" :0,	
7		"skip_image":true,	
8		"axis_to_compress":1,	
9		"correct_leach_bug":true,	
10		"correct_polarity":false,	
11		"id skip start":3,	
12		"id_skip_end":-1.	
13		"id row start":0.	
14		"id_row_end":-1.	
15		"id col start":0	
16		"id col ord": 1	
17			
1/		"n_rows_overscan":0,	
18		"n_rows_prescan" :0,	
19		"n_cols_overscan":15,	
20		"n_cols_prescan" :2,	
21		"active_region_rows":null,	
22		"active_region_cols":null	
23		},	
24		"scp":	
25			
26			
27		"convention".	
28			
20			
29		"NSKIPS": "NDCMS",	
30		"NCOIS":"NAXISI",	
31		"Nrows":"NAXIS2",	
32		"Npbin":"NPBIN",	
33		"Nsbin":"NSBIN",	
34		"ampl":"AMPL",	
35		<pre>"exposure_time":"MEXP",</pre>	
36		"read time":"MREAD"	
37			
38			
30	"nro		
10	r pro	000000	
40		"sequence"."CompressSkipperDrocess:RNvsNskipsDlot	
42		"CompressSkinnerProcess":	'
43		{	
11		"func to compress":["mean"]	
44		ווופמון j	
45		}; ∥Dodosto]CubtrostienDrossoall.	
40		"PedestalSubtractionProcess":	
47		{	
48		"image":"mean_compressed",	
49		"method":"gauss_fit",	
50		"in_overscan":true,	
51		"use_mad":false,	
52		"axis":"row",	
53		"n sigma win fit":3,	
54		"n sigma to mask":-1,	
55		"show fit":false.	
56		"histequ":false	
57		l	
31			

Only process listed in "**sequence**" will be secuentially executed and in order of appearance!

call	Dialionprocess .
	<pre>image":"mean_compressed_pedestal_subtracted", gain":5.3</pre>
}, "FitC	alibrationConstant":
	<pre>image":"mean_compressed_pedestal_subtracted", n_peaks":3, calibration":5, n_sigma_win_fit":3</pre>
■},= =	arkCurrent Process"
{ "	<pre>image":"mean_compressed_pedestal_subtracted", method":"root", do_calibratico":"true</pre>
	n_peaks":2, n_sigma fit":2
	mu_gauss":0, sigma_gauss":0,2
	lambda_poisson":0.05,
	fit_options":"QS"
"Char	geLossPlot":
	skip_id_list":[0,1,2], skip_id_baseline":-1, bistegu":false.
	gray_palette":false
"FFTN	loisePlot":
}, "RNvs	NskipsPlot":
۳ ۲	n_skips_per_block":10, is_blank":false
"Sign	alPatternRecognition":
	<pre>method" : 1, image" : "mean_compressed_pedestal_subtracted_e", isdata" : true, mask" : true, threshold" : [null,3,4]</pre>
}, "Clus	terFinder":
	method" : 1, max_nearest_neighbor" : 1
}	

pysimdamicm/json/panaSKImg_config_file.json

Any of these options (column, row or skips range) can be parameters of any Process If one process requires a different region, just add the corresponent parameters into its section

CalibrationProcess": "image":"mean_compressed_pedestal_subtracted", "image":"mean_compressed_pedestal_subtracted", "n_peaks":3, "image":"mean_compressed_pedestal_subtracted", "method":"root", "do_calibration":true, "n_peaks":2, "n_sigma_fit":2, "mu_gauss":0.0, "sigma_gauss":0.2, "lambda_poisson":0.05, "binning_size":0.25, "fit_options":"QS" "skip_id_list":[0,1,2], "skip_id_baseline":-1, "histequ":false, "SignalPatternRecognition": "method" 1, "mean_compressed_pedestal_subtracted_e" : true, "threshold" : [null,3,4] }
For simulations

psimulCCDimg LBC config.ison --g4file ../DAMICM/G4Run/LablCeiling_241Am.root --g4out ../outputs MANDATORY Configuration JSON file

psimulCCDimg psimulCCDimg_LBC_config.json --g4file ../DAMICM/G4Run/LablCeiling_241Am.root --g4out ../outputs

[absolute/relative path] input ROOT file

For simulations

psimulCCDimg psimulCCDimg_LBC_config.json --g4file ../DAMICM/G4Run/LablCeiling_241Am.root --g4out ../outputs

absolute or relative path for the outputs (automatic naming for the ROOT file)

<prefix_from_json>_logab87863_input_file_name.root

For simulations	>>> d.detector_config.Show(0) =====> EVENT:0 Diffusion_A = 0.0002162 Diffusion_B = 0.886 Diffusion_Z offect = 0	
psimulCCDimg psim	Diffusion_fanofactor = 0.16 Diffusion_alpha = 5.97e-05 Diffusion_z_max = 0.669 PixelizeSignal_shift_pixel_in_x = 0 PixelizeSignal_pixel_size_in_x = 4000 PixelizeSignal_pixel_size_in_x = 0.015 PixelizeSignal_pixel_size_in_y = 0 PixelizeSignal_pixel_size_in_y = 0.015 DarkCurrent_full_image_counter = 0 DarkCurrent_darkcurrent = 1.15741e-08 DarkCurrent_darkcurrent = 1.15741e-08 DarkCurrent_min_enlarge = 30 ElectronicNoise_full_image_counter = 0 ElectronicNoise_sigma = 0.25 ElectronicNoise_sigma = 0.25 ElectronicNoise_img_size = 300 ElectronicNoise_min_enlarge = 30 SignalPatternRecognition_threshold = 30 SignalPatternRecognition_threshold = 30 SignalPatternRecognition_method = 1 ClusterFinder_method = 1 ClusterFinder_max_nearest_neighbor = 2 e2eV = 3.77 ADC2eV = 0.72	DAMICM/G4Run/LablCeiling_241Am.rootg4out/outputs

Detailed documentation for the output ROOT file at https://ncastell.web.cern.ch/ncastell/pysimdamicm/howtouse.html#

A PyDAMICM		
Search docs		
∃ Output ROOT file		
detector_config TTree	 Parameters for the simulated process with their configuratior 	n values
geant4_config TTree	– Some parameters from the geant4 ROOT file: properties of the	e simulated vo
pixelizedEvent TTree	 Properties of the pixel (evt,ccd,x,y,z,pdg,Edep,) 	simulated SS
clustersRec TTree	 Properties of all found clusters (evt,ccd,x,y,z,Energy,Qmax,) 	siniulateu PP

Nclusters

For simulations	G4-LBC			
	>>> d.geant4_con	fig.Show(0)		
psimulCCDimg psimulC	CDim NEvts NEvts Seed primary ion ccd_mass ccd_vol ccd_density ccd_surface sim_vol_pvnames n_vols sim_vol_density sim_vol_mass sim_vol_volume	= 30000 = 2 = 722 = ion = 60a27z = 0.0169857 = 7.29 = 2.33 = 220.05 = KConccd_PV = 1 = 3.27918 = 0.00580722 = 1.77094	/DAMICM/G4Run/LablCeiling_241Am.rootg4out/ou	itputs

Detailed documentation for the output ROOT file at https://ncastell.web.cern.ch/ncastell/pysimdamicm/howtouse.html#

= 542

Fon cimulations			
ror simulations >	>> d.pixelizedEv	vent.Show(0)	
=	=====> EVENT:0		
	event	= 5	
	Npix	= (vector <int>*)0x3b45a10</int>	
	ccd	= (vector <int>*)0x3b46500</int>	
	pixels_Edep	<pre>= (vector<vector<float> >*)0x3ac4860</vector<float></pre>	
	pixels_N_carried	l_charges = (vector <vector<int> >*)0x3ac5b00</vector<int>	
	pixels_pdg	<pre>= (vector<vector<float> >*)0x3a84290</vector<float></pre>	
psimulCCDimg psim	pixels_sigma_xy	= (vector <vector<float> >*)0x3ac6f20</vector<float>	ıts
	pixels_time	<pre>= (vector<vector<float> >*)0x3ea6120</vector<float></pre>	
	pixels_x	= (vector <vector<int> >*)0x3ea4080</vector<int>	
	pixels_y	= (vector <vector<int> >*)0x3ea3350</vector<int>	
	pixels_z	<pre>= (vector<vector<float> >*)0x3ecfd50</vector<float></pre>	
	pp_energy	<pre>= (vector<vector<float> >*)0x3ea3f70</vector<float></pre>	
	pp_momx	= (vector <vector<float> >*)0x3ea0d00</vector<float>	
	pp_momy	<pre>= (vector<vector<float> >*)0x3b0b280</vector<float></pre>	
	pp_momz	= (vector <vector<float> >*)0x208b5b0</vector<float>	
	pp_posx	= (vector <vector<float> >*)0x3f560f0</vector<float>	
	pp_posy	= (vector <vector<float> >*)0x3e9cc70</vector<float>	
	pp_posz	= (vector <vector<float> >*)0x3f16e30</vector<float>	

Detailed documentation for the output ROOT file at https://ncastell.web.cern.ch/ncastell/pysimdamicm/howtouse.html#

A PyDAMICM	
Search docs	
Output ROOT file	
detector_config TTree	 Parameters for the simulated process with their configuration values
geant4_config TTree	– Some parameters from the geant4 ROOT file: properties of the simulated v
pixelizedEvent TTree	 Properties of the pixel (evt,ccd,x,y,z,pdg,Edep,) simulated S
clustersRec TTree	 Properties of all found clusters (evt,ccd,x,y,z,Energy,Qmax,)

			ufo b cce	storsPo	~ C	how(A)		
For simulations			> E			100(0)		R.
		ons i	ovent	VENT.0	_ 1	5		W
			Neluster	c .	_ :	1		
			NCLUSCEL	3	_ `	⊥ (vector∕float>*)@v2605cf0		
					_	(vector < float > *) 0x3095010		
			Enoray		_	(vector < float > *)0x30e3700		
			Energy		_	(vector <int>*)0x2532400</int>		
			пртх		_	(vector <float>*)0x3071050</float>		
			PUSA		_	(vector <lioat>*)0x3619450</lioat>		
psin	mulCCDimg	psim	PUST		_	(vector <lioat>*)0x36ua700</lioat>		1Am.rootg4out/outputs
	0		Qillax		_	(vector <lioat>*)0x3609190</lioat>		9
			Qillaxx		_	(vector <liudl>~)0X300C910 (vector<float>*)0x267of10</float></liudl>		
			QIIIAXT		_	(vector <lioat>*)0x3670110</lioat>		
			RMSX		=	(Vector <lioat>*)0X2531ec0</lioat>		
			RMST		=	(vector <lioal>^)0X3690610</lioal>		
			cca	र्ग व	=	(Vector<1nt>*)0X36916e0		
			cluster_	10	=	(Vector <int>^)0X36912C0</int>		
			maxx		=	(Vector <tloat>^)0X36T6e90</tloat>		
			maxy		=	(Vector <tloat>^)0X36e4DD0</tloat>		
			meanx		=	(Vector <tloat>^)0X3684/30</tloat>		
			meany		=	(Vector <tloat>^)0X3681C20</tloat>		
			minx		=	(Vector <tloat>^)0X3/e1820</tloat>		
			miny		=	(vector <float>*)0x36ea8b0</float>		
Detaile	d docume	entat	pixels_E		=	(vector <vector<float> >*)0x2ecf67</vector<float>	0	stell/pysimdamicm/howtouse.html#
		_	pixels_t	ıme	=	(vector <vector<float> >*)0x3a8437</vector<float>	0	
	🕋 F	PyDAMI	pixels_x		=	(vector <vector<float> >*)0x3a8f80</vector<float>	00	
			pixels_y		=	(vector <vector<float> >*)0x3a2916</vector<float>	50	
	Search docs		pixels_z		=	(vector <vector<float> >*)0x3ab237</vector<float>	0	
			pp_energ	У	=	(vector <vector<float> >*)0x3ab2d3</vector<float>	30	
	Output RO	DOT fi	pp_momx		=	(vector <vector<float> >*)0x3a8b39</vector<float>	90	
			pp_momy		=	(vector <vector<float> >*)0x3acc0c</vector<float>	:0	
	detector	_config	pp_momz		=	(vector <vector<float> >*)0x3acb4f</vector<float>	0	uration values
	coont/	onfor -	pp_posx		=	(vector <vector<float> >*)0x3aa85c</vector<float>	10	s of the simulated volumes
	geant4_c	Coning	pp_posy		=	(vector <vector<float> >*)0x3a727c</vector<float>	:0	s of the simulated volumes,
pixelizedEvent clustersRec TTre		Event	pp_posz		=	(vector <vector<float> >*)0x3a6182</vector<float>	20	simulated SS [CCDs]
		210110	primary_	part	=	(vector <vector<float> >*)0x36edfl</vector<float>	00	simulated PP,
		ee	– Propert	ies	of all found clusters (evt,ccd,x,y,z,Energ	y,Qr	nax,) 43	

For simulations

WARNING: Parameter <pixelsaturation.units> will be ignored (Not implemented) WARNING: Parameter <continuousreadout.units> will be ignored (Not implemented)</continuousreadout.units></pixelsaturation.units>
WARNING: Parameter <ccd_pixel_size_y> will be ignored (Not implemented) Config.activate_configuration Add Diffusion process to the simulated process chain. Config.activate_configuration Add PixelizeSignal process to the simulated process chain. Config.activate_configuration Add ClusterFinder process to the simulated process chain.</ccd_pixel_size_y>
INFO. Input root file: /pbs/home/n/ncastell/repos/pysimdamicm/notebooks/software_school_2021 INFO. Output root file: /pbs/home/n/ncastell/repos/pysimdamicm/notebooks/software_school_2021 Setting value of ccd_pixel_size_x to 0.015 Setting value of ccd_pixel_size_y to 0.015 Setting value of ccd_thickness to 0.675 Setting value of e2eV to 3.77 Setting value of detector_name to CCDSensor_PV main INFO. Process sequence (objects): [<pysimdamicm.processes.detector_response.diffusion 0x7f890b7fae80="" at="" object="">, <pysimdamicm.process onstruction.ClusterFinder object at 0x7f8957aa1b00>]</pysimdamicm.process </pysimdamicm.processes.detector_response.diffusion>
Loading geant4 data * CCDOut loaded (2.3 sec), * EventOut loaded (0.22 sec)
Reconstruction process starts: * 431/30000 events to process, 1.437%
event 5 (0% processed)
event 3369 (10% processed)
event 5669 (20% processed)
event 8793 (30% processed)
event 11908 (40% processed)
event 15804 (50% processed)
event 17936 (60% processed)
event 20493 (70% processed)
Time statistics: - Reconstruction processes d - Found volume KConccd_PV
Found volume CCDSensor_PV Found volume KConccd_PV
Output Root file: /pbs/home/n/ncastell/repos/pysimdamicm/notebooks/software_school_2021/ex2_3/60Cd

expected ouput

reading from JSON file

reading input ROOT

reconstruction starts

•••

Extracting info from: Sensitive detector where PP were placed (if used)

. . .

For simulations

debug mode

For skipper CCD images

panaSKImg --json panaSKImg_config_compton.json "/data/compton/data/*Image*Source*fits" --skip _598 full_1.fits -o .

configuration JSON file

For skipper CCD images

panaSKImg --json panaSKImg_config_compton.json "/data/compton/data/*Image*Source*fits" --skip _598 full_1.fits -o .

mandatory input file(s)
(accept wildcards, you need "")

For skipper CCD images

panaSKImg --json panaSKImg_config_compton.json "/data/compton/data/*Image*Source*fits" --skip _598 full_1.fits -o .

Image(s) to be ignore (those containing this pattern)

Compton setup

For skipper CCD images

output directory automatic naming for output plots and images (using input file name, process class, sub-string if needed)

For skipper CCD images

- panaSKImg --json panaSKImg_config_compton.json "/data/compton/data/*Image*Source*fits" --skip _598 full_1.fits -o . --save-plots --save-img --display --verbose
 - -s ChargeLossPlot,CompressSkipperProcess,PedestalSubtractionProcess,SignalPatternRecognition,ClusterFinder

• • •

<pre>(venv_software_school) /(0)>panaSKImghelp isage: panaSKImg [-h] [skip SKIP [SKIP]] [-o OUTPUT] [-e EXTENSION] [-j JSONFILE] [mask MASK] [dqm] [dqm-data-dir DQM_DATA_DIR] [image-HR IMAGE_HR] [run RUN] [me-ref ME_REF] [all-me] [invert] [skip-start ID_SKIP_START] [skip-end ID_SKIP_END] [row-start ID_ROW_START] [row-end ID_ROW_END] [col-start ID_COL_START] [col-end ID_COL_END] [scipal] [verbose] [cal CALIBRATION] [slipal] [verbose] [cal CALIBRATION] [nethod METHOD] [in-overscan] [axis AXIS] [n-sigma-win-fit N_SIGMA_WIN_FIT] [n-sigma-to-mask N_SIGMA_TO_MASK] [show-fit] [skip-id-list SKIP_ID_LIST [SKIP_ID_LIST]] [skip-id-baseline SKIP_ID_BASELINE] [histequ] [skip-id-baseline SKIP_ID_BASELINE] [histequ] [gray-palette] [n-skips N_SKIPS_PER_BLOCK] [is-blank] [n-sigma-fit N_SIGMA_FIT] [mu-gauss MU_GAUSS] [n-sigma-fit N_SIGMA_FIT] [mu-gauss MU_GAUSS] [sigma-gauss SIGMA_GAUSS] [lambda-poisson LAMBDA_POISSON] [sigma-gauss SIGMA_GAUSS] [do-calibration] infile</pre>
oositional arguments: infile Input CCD Image or a pattern file name for multiple inputs, in this case use "" to quote the expression. If extension is not 0, see -e

Useful command lines

to store plots to store images to display the final plots before ending to display intermediate plots and print more msm to set the sequence of process

All command lines has preference over the JSON file values

psimulCCDimg psimulCCDimg_LBC_config.json --g4file ../DAMICM/G4Run/LablCeiling_241Am.root --g4out ../outputs --debug --event 5 --cls-pix-min 5

Optional command lines related to debug mode

```
panaSKImg --json panaSKImg_compton_config.json "/data/compton/data/*Image*Source*fits" -o ../Run145/avg
--skip _598 full_1.fits --save-plots --save-img --verbose
-s CompressedSkipperProcess,PedestalSubtractionProcess,SignalPatterRecognition,ClusterFinder
--skip-start 3 --skip-end 1569 --func-to-compress mean
...
```

A lot of optional command lines

 \rightarrow mostly to launch without changing the JSON file

So far, all configurable parameters have a command line which has preference over the json file one

For developers only

Do you need a process that is not available?

Do you need a process that is not available?

WADERS allows any new algorithm to be added as a new process

But before

A few words on the operational outline

Input file encapsulated into runtime containers

RawData	G4HitColle	ction
.header	. X	
.ncols	.y	
.nskips	.Z	
.image	.pdg	
.image	.Edep	the

the data we want to manipulate

sequence, set of processes \rightarrow sorted and [JSON] \rightarrow configured configuration by the **Process Manager**

Input file encapsulated into runtime containers

RawData	G4HitCollection
.header	.Χ
.ncols	.у
.nskips	.Z
.image	.pdg
.image	.Edep the data we want to manipulate

Process Manager

	image mean compressed	.Edep	
process1 execute_process	create plot	.Х	
		.y	
	.11	.Z	

sequence, set of processes

 \rightarrow sorted and \rightarrow configured

[JSON] configuration by the Process Manager

or maniupate existing ones

create new data members from existing ones [or news]

Input file encapsulated into runtime containers

	RawData	G4HitCollec	tion
	.header .ncols .nskips .image	.x .y .z .pdg	
	 .image	 .Edep	the data we want to manipulate
Process Manager process1 execute_process	.image_mean_compressed .gain	.Edep .x .y .z	sequence, set of processes → sorted and [JSON] → configured configuration by the Process Manager
process2 execute_process	create some plots(rawdata.gain)	.pixel_Edep .pixel_x .pixel_y .pixel_z	
processN execute_process	.image_mean_compressed_e	.image_noise	

	Input file encapsu	lated into runtime contai	iners
	RawData	G4HitCollection	
	.header .ncols .nskips .image 	.x .y .z .pdg 	
	.image	.Edep the da	ta we want to manipulate
Process Manager process1 execute_process	.image_mean_compressed .gain	.Edep .x .y .z	sequence, set of processes \rightarrow sorted and [JSON] \rightarrow configured configuration by the Process Manager
process2 execute_process	create some plots(rawdata.gain)	.pixel_Edep .pixel_x .pixel_y .pixel_z	
processN execute_process	.image_mean_compressed_e	.image_noise	

Input file encapsulated into runtime containers

Be very careful: a process is an algorithm with a single objective. If this objective is the product of a 68 two-process sequence means your process is not well define within this framework!!!

Do you need a process that is not available?

WADERS allows any new algorithm to be added as a new process

How to

Do you need a process that is not available?

WADERS allows any new algorithm to be added as a new process

An extension of an available process? Or new?

	4	lbstract class	he working scope, the processes are grouped	
		DigitizeProcess	detector response: to digitilize the geant4 monte carlo simulation (which have to be compatible with the one from DAMICG4) pysimdamicm/processes/detector_response.py	ons
	_	SKImageProcess	<pre>comissioning: for any [skipper] CCD image pysimdamicm/processes/skipper_comissioning.py</pre>	
		SKImageProcess	<pre>analysis: for any [skipper] CCD image pysimdamicm/processes/reconstruction.py pysimdamicm/processes/skipper_analysis.py</pre>	
		MEabs	Monitor Element: a plot or quantity as data quality of your data tak pysimdamicm/dqm/me.py	ing
			Visit the Compton Setup web site https://ncastell.web.cern.ch/ncastell/compton_web_site/ to see the full set of available ME	18

70

Extending the library of process: how to

Building a new process

It has mandatory ingredients

- (class attribute name) string uniquely identifying the process
- (class attribute sequence id) integer defining the per default order in the sequence of the process to be executed
- any parameter to be configured from the json file must be added to the object dictionary ___units___
- the algorithm must be implemented in the method execute_process (self, rawdata)
- The process does not return nothing:
 - any needed parameter must be appended into the rawdata object
- The *automatic plug-in mechanism* is still work in progress. So far, the process manager must be informed ad hoc

```
add the process in the
ProcessManager.___valid_processes___
class attribute
```

must inherit from abstract class DigitizeProcess, SKImageProcess or MEabs

L class <mark>N</mark> 2	ameOfThePROCES(ABSTRACTCLASSNAME): DOCUMENT IS REALES IMPORTANT!!
3 1	blablabla blablalbalbla
5 L	Documentation is really importantly
Ó	Attributes
L 2 3	A :: int blab
1 5 """	
6s 7n	equence_id = 1111 ame = 'NameOfThePROCESS'
) def	init(self):
2	<pre>super()init()</pre>
3 1 5	self.A
) 7	### selfunitsupdate({'A':u.ADC/u.pixel})
) def	<pre>execute_process(self,rawdata):</pre>
L 2 3	<pre>print("Process <nameoftheprocess> INFO. Bla bla bla bla usin ") print(" using {} ADC/pix".format(self.A))</nameoftheprocess></pre>
+ 5 6 7	#### CODE HERE YOUR ALGORITHM ####################################
3	# get image
) 	# create blab bla bla
L 2 2	*****
1	<pre>#### if required, add attribute to RawData object setattr(rawdata,"attr_name",obj_attr_name)</pre>

Extending the library of process: how to

Building a new process

It has mandatory ingredients

- (class attribute name) string uniquely identifying the process
- (class attribute sequence id) integer defining the per default order in the sequence of the process to be executed
- any parameter to be configured from the json file must be added to the object dictionary ___units___
- the algorithm must be implemented in the method execute_process(self,rawdata)
- The process does not return nothing:
 - any needed parameter must be appended into the rawdata object
- The *automatic plug-in mechanism* is still work in progress. So far, the process manager must be informed ad hoc

```
add the process in the
ProcessManager.___valid_processes__
class attribute
```

must inherit from abstract class DigitizeProcess, SKImageProcess or MEabs

1 clas 2	SS Na """[IMEOTTHEPROCESS(ABSTRACTCLASSNAME): DOCUMENT IS REALLY INPORTANT!!
3 4		blablabla blablalbalbla
5	D	0.011m -
7		** uneptation is reall
8 9		importantly
0		Attributes
2		A :: int blab
4 5		
6 7 8	se na	equence_id = 1111 mme = 'NameOfThePROCESS'
9 0	def	init(self):
1 2		<pre>super()init()</pre>
3 4 5		self.A
6 7		### selfunitsupdate({'A':u.ADC/u.pixel})
9 0	def	<pre>execute_process(self,rawdata): """</pre>
1 2 3		<pre>print("Process <nameoftheprocess> INFO. Bla bla bla bla usin ") print(" using {} ADC/pix".format(self.A))</nameoftheprocess></pre>
4 5 6 7		#### CODE HERE YOUR ALGORITHM
8 9		# get image
0		# create blab bla bla
2 3		******
4 5		<pre>##### if required, add attribute to RawData object setattr(rawdata,"attr_name",obj_attr_name)</pre>

Building a new process

It has mandatory ingredients

- (class attribute name) string uniquely identifying the process
- (class attribute sequence id) integer defining the per default order in the sequence of the process to be executed
- any parameter to be configured from the json file must be added to the object dictionary ___units___
- the algorithm must be implemented in the method execute_process (self, rawdata)
- The process does not return nothing:
 - any needed parameter must be appended into the rawdata object
- The *automatic plug-in mechanism* is still work in progress. So far, the process manager must be informed ad hoc

```
add the process in the
ProcessManager.__valid_processes_
class attribute
```

must inherit from abstract class DigitizeProcess, SKImageProcess or MEabs

1 clas 2	SS NameOfThePROCESS(ABSTRACTCLASSNAME):
_ 3 ⊿	hlahlahla hlahlalhalhla
5	
6	Documentation
8	$\sim 10^{11} \text{ sreal} \text{ sreal}$
9	Attributes
0 1	ALLITURES
2	A :: int
3 4	ntan
5	
7	sequence_id = 1111 name = 'NameOfThePROCESS'
8 9	definit(self):
0	ини ^с
2	<pre>super()init()</pre>
3 ⊿	
5	
6 7	### solf units undate({/\/'u ADC/u nivel})
8	
9 ∩	<pre>def execute_process(self,rawdata): """</pre>
1	
2 3	<pre>print("Process <nameoftheprocess> INFO. Bla bla bla bla usin ") print("using {} ADC/pix".format(self.A))</nameoftheprocess></pre>
4	
5 6	#### CODE HERE YOUR ALGORITHM ####################################
7	
8 9	# get image
0	# create blab bla bla
1 2	*******
3	nunu if accounted add attribute to Departs abient
4 5	setattr(rawdata,"attr_name",obj_attr_name)

Building a new process

It has mandatory ingredients

- (class attribute name) string uniquely identifying the process
- (class attribute sequence id) integer defining the per default order in the sequence of the process to be executed
- any parameter to be configured from the json file must be added to the object dictionary ___units__
- the algorithm must be implemented in the method execute_process (self, rawdata)
- The process does not return nothing:
 - any needed parameter must be appended into the rawdata object
- The *automatic plug-in mechanism* is still work in progress. So far, the process manager must be informed ad hoc

add the process in the

ProcessManager.___valid_processes__
class attribute

must inherit from abstract class DigitizeProcess, SKImageProcess or MEabs

21 cla	ss Na	meOfThePROCES(ABSTRACTCLASSNAME):
22	""""	OCUMENT IS REAL TOPORTANT!!
23		
24	~	
26	D	0.611mond
27		xx = y tation is no 1
28		really impact
29		J importantil
30 ⊳1		Attributes
≥⊥ ₹2		Δ · · int
33		blab
34		
35		
36	se	equence_id = 1111
37	na	me = 'NameofInePROCESS'
50 20	dof	init (self)
10	uci	
1		
12		<pre>super()init()</pre>
13		
14 15		SELT.A
+5 16		###
17		self. units .update({'A':u.ADC/u.pixel})
18		
19	def	<pre>execute_process(self,rawdata):</pre>
50		
		<pre>""" print/"Drococc <nemoofthoddocess ")<="" bla="" dia="" ineo="" pre="" ucin=""></nemoofthoddocess></pre>
53		print(" using {} ADC/pix".format(self.A))
54		
55		#### CODE HERE YOUR ALGORITHM
56		****
57		H mat imam
00 50		# get 1mage
59 50		# create blab bla bla
51		
62		
63		
64 65		<pre>#### if required, add attribute to RawData object setattr(rawdata,"attr_name",obj_attr_name)</pre>

132

33

Building a new process

It has mandatory ingredients

- (class attribute name) string uniquely identifying the process
- (class attribute sequence id) integer defining the per default order in the sequence of the process to be executed
- any parameter to be configured from the json file must be added to the object dictionary units
- the algorithm must be implemented in the method execute_process (self, rawdata)
- The process does not return nothing:
 - any needed parameter must be appended into the rawdata object
- The *automatic plug-in mechanism* is still work in progress. So far, the process manager must be informed ad hoc

add the process in the

ProcessManager.___valid_processes___ class attribute

must inherit from abstract class DigitizeProcess, SKImageProcess or MEabs

class N	ameOfThePROCESS(ABSTRACTCLASSNAME): DOCUMENT IS REALLY IMPORTANT!!
	blablabla blablalbalbla
	$\begin{array}{rl} \text{math:} \\ xx = y + x \end{array}$
	Attributes
	A :: int blab
""" S(n;	equence_id = 1111 ame = 'NameOfThePROCESS'
def	<pre>init_(self): """" super()init_() sel1.A</pre>
	### selfunitsupdate({'A':u.ADC/u.pixel})
def	<pre>execute_process(self,rawdata): """ """ print("Process <nameoftheprocess> INFO. Bla bla bla usin ")</nameoftheprocess></pre>
	<pre>print(" using {} ADC/pix".format(self.A))</pre>
	#### CODE HERE YOUR ALGORITHM
	# get image
	# create blab bla bla

	#### if required, add attribute to RawData object setattr(rawdata,"attr_name",obj_attr_name)

#####

п

Extending the library of process: example

Extending the library of process: example

Building a new process

Let's see a very simple example

pysimdamicm/processes/skipper_analysis.py

```
class CalibrationProcess(SKImageProcess):
389
        """The image will be calibrated: from ADC to electrons using the gain parameter
390
391
392
393
        ___sequence_id__ = 25
        name = 'CalibrationProcess'
394
395
396
            init (self):
        def
397
398
            super().__init ()
399
400
            self.image = "mean_compressed_pedestal_subtracted"
401
402
            self.gain = 5.3*u.ADC
403
404
            self. units .update({'gain':u.ADC})
405
406
407
        def execute_process(self,rawdata):
408
409
410
            print("Process <CalibrationProcess> INFO. The image will be calibrated using a gain of {} ADC/e-".format(self.gain))
411
412
            #### GET IMAGE
413
414
            itype = rawdata.get_image_attribute_name(self.image)
415
            image = getattr(rawdata,itype)
416
            setattr(rawdata,"{}_e".format(itype),image/self.gain)
417
418
```

Extending the library of process: example

Building a new process

Let's see a very simple example

pysimdamicm/processes/skipper_analysis.py

```
class CalibrationProcess(SKImageProcess):
389
        """The image will be calibrated: from ADC to electrons using the gain parameter
390
391
392
393
        __sequence_id__ = 25
        ___name__ = 'CalibrationProcess'
394
395
396
        def __init__(self):
397
398
            super().__init ()
399
400
401
            self.image = "mean_compressed_pedestal_subtracted"
402
            self.gain = 5.3*u.ADC
403
404
405
            self. units .update({'gain':u.ADC})
406
407
        def execute_process(self,rawdata):
408
409
410
            print("Process <CalibrationProcess> INF0. The image will be calibrated using a gain of {} ADC/e-".format(self.gain))
411
412
            #### GET IMAGE
413
414
            itype = rawdata.get_image_attribut(_name(self.image)
415
            image = getattr(rawdata,itype)
416
            Setattr(rawdata,"{}_e".format(itype),image/self.gain)
417
418
```


The 'image' in the JSON file [only for panaSKImg]

- is the name of the image to be manipulated
- some processes (as this one) append a new image into the RawData object as a data member, which can be used for any further process

class CalibrationProcess(SKImageProcess):					
name = 'CalibrationProcess'					

The 'image' in the JSON file [only for panaSKImg]

- is the name of the image to be manipulated
- some processes (as this one) append a new image into the RawData object as a data member, which can be used for any further process

The **'image'** in the JSON file [only for panaSKImg]

- is the name of the image to be manipulated
- some processes (as this one) append a new image into the RawData object as a data member, which can be used for any further process

process name	image param	RawData attribute	appended RawData attribute
CompressSkipperProcess	raw	image	image_mean_compressed
PedestalSubtractionProcess	mean_compressed	image_mean_compressed	image_mean_compressed_pedestal_subtracted
CalibrationProcess	mean_compressed_pedestal_subtracted	image_mean_compressed_pedestal_subtracted	image_mean_compressed_pedestal_subtracted_e

https://gev.uchicago.edu/compton/howto_notebooks/analysis/howto_Config.html

The Units Class

pysimdamicm/processes/skipper_analysis.py

The Units Class

84

Ъd

pysimdamicm/utils/units

The singleton class Units defines the unit system and its default

- Any configurable parameter has units
 - 1: for strings, boolean and addimensional
- execute_process: the algorithm implementation must be done in the default units
- Be careful with the units when adding an attribute to RawData object. For instance, if you just want to have something in units of keV

```
something_keV = something/u.keV
```

```
9 class Units(object):
        """Define the system units by default and its conversion factors
                                                                                                    self.ccd_shape=(int(4000), int(6000))*self.pixe
                                                                                                    self.ccd_pixel_size_x=float(15./1000.)*self.mr
                                                                                                    self.ccd pixel size v=float(15.0/1000.)*self.m
                                                                                        50
51
52
53
54
13
        Attributes
                                                                                                    self.ccd_thickness=0.675*self.mm
14
        mm : float
                                                                                                    self.n_rows_overscan = 0
            milimeter, default unit for coordenates
                                                                                                    self.n rows prescan = 0
                                                                                        55
57
58
59
60
61
62
63
64
                                                                                                    self.n_cols_overscan = 0
18
                                                                                                    self.n_cols_prescan = 0
19
20
21
22
23
24
       ADC2eV : float
                                                                                                    self.pix2mm=self.ccd_pixel_size_x
            Value to convert ADC (analog-to-digital converter) units to keV,
                                                                                                    self.mm2pix=1/self.ccd_pixel_size_x
            default is 2.6E-4.
                                                                                                    self.um = 1e-3 * self.mm
26
27
        def __init__(self):
                                                                                                    self.cm = 10 * self.mm
                                                                                        65
                                                                                                   self.m = 1e3 * self.mm
            self.mm = float(1.0)
                                                                                                   self.keV = 1e3 *self.eV
                                                                                                   self.MeV = 1e6 *self.eV
            self.eV = float(1.0)
            self.s = float(1.0)
                                                                                                    self.GeV = 1e9 *self.eV
32
33
34
35
36
37
            self.pixel = int(1)
                                                                                                    self.us = 1e-6*self.s
            self.e = int(1)
                                                                                                    self.ms = 1/1000*self.s
            self.eVee = float(1.0)
                                                                                        73
74
                                                                                                    self.minute = 60.0*self.s
            ### ADCu
                                                                                                    self.hour = 60.0*self.minute
                                                                                        75
76
77
78
79
            self.ADC = 1
                                                                                                    self.day = 24.0*self.hour
39
                                                                                                    self.pix_saturation = 0.0*self.ADC*self.ADC2eV
            self.e2ADC = 14.5*self.ADC
            self.e2eV = 3.77*self.eV
                                                                                        80
81
            self.eV2ADC = 1/self.e2eV * self.e2ADC
                                                                                                    self.detector name = "CCDSensor PV"
43
            self.ADC2eV = 1/self.e2ADC * self.e2eV
44
            self.ADC2e = 5.3
                                                                                                    self.n_figure = 1
```

- WADERS is a framework for both simulations and reconstruction of skipper images
 - defines and provides the infraestructure
 - provides an extense library of processes
 - and can be extended
 - the latest version v3.0.1 is functional and stable
 - extensively used for simulations, Compton setup, ...
- Can be used
 - for comissioning purposes
 - for high level analysis
 - as a data quality monitor
 - as a plotter
 - ...
- Extensively documented
 - Implementation details (design, classes, definitions, interfaces, ...)
 - *howto* notebooks (algorithm description, running examples, ...)
 - Huge effort, but still needs to be improved, feedback will be welcome

https://ncastell.web.cern.ch/ncastell/pysimdamicm/

https://gev.uchicago.edu/compton/

Working on

- In the Simulations Scope
 - allow Saturation process to be applied even when noise is not booked [Nuria]
 - paste clusters into blank image (coming soon, needed now for Compton) [Nuria/Nick]
 - Karthik Diffusion model [Nick]
 - allow to record clusterTrue and clusterRec (now goes all into clusterRec) [Nuria]
 - add library of plots for background mitigation studies (the one I have is part of another module) [Nuria]
 - link to a data base for contamination materials
- In the analysis scope
 - still to premature to plan improvements ... we just started to use it!
- DQM
 - set/unset ME via JSON [Agustin]
 - write documentation for each ME process [Agustin]
 - output as a pickle object → migrate to mongoDB [Alvaro/Jordi/Nuria]
 - create an interactive web [Jordi/Nuria]
 - include automatic publication to a web [Jordi/Nuria]
- [general] Framework
 - process library on runtime to avoid to add the process into the process_manages [Nuria]
 - analysis code documentation [Agustin/Nuria]
 - integrate all documentation into the official web [Nuria]
 - clean code from deprecated options [Nuria]

The code will improve as the people start to use it!

softWAre for Dark matter ExpeRiments with Skippers

WADERS Framework

pronounced [v AI d e r s]

Questions?

The code will improve as the people start to use it! Any bug? Any suggestion? contact me on slack, by e-mail or **preferently open an issue** on gitlab.in2p3.fr

https://gitlab.in2p3.fr/damicm/pysimdamicm/-/issues