
Jordi Duarte-Campderrós

A gentle introduction to

or
How to develop software with other

folks

[gɪt]*

https://www.youtube.com/watch?v=4XpnKHJAok8%3Ft%3D1m30s*

https://www.youtube.com/watch?v=4XpnKHJAok8%3Ft%3D1m30s

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 2

The problem

● An usual working day algorithm for a [PUT HERE YOUR PROFESSION]

– Create

– Modify

 → SAVE it (and again… and again… and again…)

OR/AND

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 4

The problem

 → SAVE it (and again… and again… and again…)

– When did you make some change
– Why did you make that change
– How did you make that change

● Keeping a detailed TRACK HISTORY of your important stuff

● Why is it important to keep history?
– Well…

“Those who cannot remember the past are condemned to repeat it.”
 G. Santayana

Create
slides

Change to a
nicer

template

Include
discussion
about CVSs

Remove
silly joke

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 5

The solution

● → Version Control Systems

– When you made some change
– Why you made that change
– How you made that change

● Keeping a detailed TRACK HISTORY of your important stuff

Create
slides

Change to a
nicer

template

Include
discussion
about CVSs

Remove
silly joke

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 6

The real problem:
collaborative work

● An usual working day algorithm for a bunch of [PUT HERE YOUR PROFESSIONs]

</>

</>

</>

</>

</>

</>

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 7

More than ever:
 the solution

● → Version Control Systems

– Who made some change
– When somebody made some change
– Why somebody made that change
– How somebody made that change
– Unify all the changes together → MERGE

● Keeping a detailed TRACK HISTORY of all important stuff

Create
slides

Change to a
nicer

template

Include
discussion
about CVSs

Remove
silly joke

</></> </> </>

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 8

 → Control Version Systems

– Who make some change
– When somebody make some change
– Why somebody make that change
– How somebody make that change
– Unify all the changes together → MERGE

● Keeping a detailed TRACK HISTORY of all important stuff

Create
slides

Change to a
nicer

template

Include
discussion
about CVSs

Remove
silly joke

</></> </> </>

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 9

GIT: a distributed VCS

● Git is local
– Allows version control in your computer

● Just need to install git
● Initialize the repository
● Decide what do you want to control

– Place them under the same directory
● Add those files you want to version control

Exercise

$ _

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 10

Interlude 1: code
development best practice

DON’T FLIGHT A PLANE WHERE YOU BUILT IT!!

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 11

● NEVER execute programs in the same folder than your development/coding area
– Create a developing area where to put your source code
– Create a working independent area where to execute your codes

your_home

projects work

a_repo another_repo

doefolder1

... ...study_using_a
_lot_of_codes

data_analysis_
using_a_repo

...

Interlude 1: code
development best practice

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 12

Git: a distributed VCS

● Git is local
– Allows version control in your computer

● Just need to install git
● Initialize the repository
● Decide what do you want to control

– Place them under the same directory
● Add those files you want to version control

Exercise

$ git init padawan-repo
$ cd padawan-repo
$ echo ‘May the git be with you’ > keepaneyeonit.txt
$ touch idontcarethis.dat
$ git add keepaneyeonit.txt

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 13

Usual workflow: the areas

Exercise

$ git init padawan-repo
$ cd padawan-repo
a

● Creates the infrastructure to start
versioning your project inside the
padawan-repo folder (Working Directory)
– .git folder: the repository, actually,

a compressed database with all the files
history, configuration, etc...

$ git config --global color.ui auto
$ git config -–global user.name “First Last Name”
$ git config --global user.email “myemail@example.com”

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 14

Usual workflow

Exercise

$ echo ‘May the git be with you’ > keepaneyeonit.txt
$ touch idontcarethis.dat
$ git add keepaneyonit.txt

● Add the file as a “file to be control-versioned”
– The file is sent to the STAGING area,

a place containing the info about what
it go into next commit, a kind of
 ‘waiting room’ before being store in the database

● Any modification in the file must be explicitly added from there on
in order to store the changes

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 15

Usual workflow

Exercise

$ git commit -m ”Initial commit”

● Creates a snapshot of the project as it is
right now, and store it permanently
in the database (.git directory,
i.e. the repository)

● The snapshot is uniquely identified by an
integer hash key, SHA-1

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 16

(Create-)Modify-Save in Git

$ git add <file/partial file>

$ git commit -m“Meaningful msg”

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 17

The three states of a file

● A file being controlled by git (git add) will be in any of the following states:

– Modified: the file contains some changes not stored in the local database
– Staged: the modified file is marked to go into the next commit snapshot
– Committed/Unmodified: the data is already stored in the local database

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 18

The lifecycle of a file

Tracked

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 19

Usual workflow (revisit’d)

1. Start working from a particular snapshot: that particular version is
decompressed from the local database to the working directory
– Usually you start from the last snapshot you did, so don’t do nothing

$ git checkout <version>

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 20

Usual workflow (revisit’d)

1. Start working from a particular snapshot: that particular version is
decompressed from the local database to the working directory
– Usually you start from the last snapshot you did, so don’t do nothing

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 21

Usual workflow (revisit’d)

1. Start working from a particular snapshot: that particular version is
decompressed from the local database to the working directory
– Usually you start from the last snapshot you did, so don’t do nothing

2. Modify files from the working tree

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 22

Usual workflow (revisit’d)

1. Start working from a particular snapshot: that particular version is
decompressed from the local database to the working directory
– Usually you start from the last snapshot you did, so don’t do nothing

2. Modify files from the working tree
3. Selectively stage just those changes you want to be part of the next commit

$ git add <file(s)>

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 23

Usual workflow (revisit’d)

1. Start working from a particular snapshot: that particular version is
decompressed from the local database to the working directory
– Usually you start from the last snapshot you did, so don’t do nothing

2. Modify files from the working tree
3. Selectively stage just those changes you want to be part of the next commit
4. Do a commit, take all the files in the staging area and stores that snapshot permanently

in the database

$ git commit -m ”Message”

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 24

Starting to feel the power of
git…

Exercise

$ echo ‘Your google searches can deceive you. Don’t trust them
blindly’ > training-01.txt
$ touch training-02.txt
$ git add training-01.txt
$ git status
$ git commit -m “Include lesson on keeping critical spirit”
$ git add training-02.txt
$ echo ‘Git or Git not. There is no try.’ >> training-02.txt
$ echo -ne ‘\n-+ Some useful subcommands:\n’ >> training-02.txt
$ git add -p training-02.txt
$ git commit -m “Include the need to take sides”
$ git add training-02.txt
$ git commit -m “Prepare placeholder for command reference”
$ git log

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 25

Interlude 2: commit best
practices

1. Concise and granular commits
– Commits should be focused in a particular change, or group of conceptually

equivalent changes

2. Commit often
– Easy to track changes, share quickly, …
– Avoid large, independent set of changes

3. Commit finalized work
– Don’t commit changes which are not logically finished, but
– Split your changes in small chunks in order to accomplish the ultimate

objective (so you can apply 1. and 2.)

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 26

Interlude 2: commit best
practices

4. Write meaningful and useful commit messages summarizing the implemented
changes, why was needed, what is different now, …
– Capitalized short summary (of 50 or so chars)

● Use imperative tense, start after the sentence: “This commit will ”
– “Fix bug” not “Fixed bug”, “Fixes bug” or “fix bug”

– If needed, more detailed text: leave a blank line after the previous summary
● Wrap it in about 72-80 characters

5. [If relevant] Test the code before commit
– Be sure the changes do not break anything

6. Branching
− Create a branch to develop a new line of development, a set of large

modifications, a bugfix, … one of the most Git’s powerful features→

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 27

Starting to feel the power of
git...

Exercise

$ echo ‘Your google searches can deceive you. Don’t trust
them blindly’ > training-01.txt
$ touch training-02.txt
$ git add training-01.txt
$ git status
$ git commit -m “Include lesson on keeping critical spirit”
$ git add training-02.txt
$ echo ‘Git or Git not. There is no try.’ >> training-02.txt
$ echo ‘\n-+ Some useful subcommands:’ >> training-02.txt
$ git add -p training-02.txt
$ git commit -m “Force to take a side”
$ git add training-02.txt
$ git commit -m “Prepare placeholder for command reference”
$ git log

● Provides information about the working and staging areas current status.
● It shows:

– Staged files ready to be committed→
– Modified files ready to be added→
– Untracked files not version-controlled→

● Also, provides you reminders of what you can do, especially useful if you want to
undo any action...

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 28

Reconsider changes

$ git reset training-01.txt
$ git status

● How to come back to modified state once you staged some changes

● The file is in modified state again

● Let’s come back to the previous slide state...

$ git reset <file>

$ git add training-01.txt

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 29

Ignore annoying files

● .gitignore allows to ignore intentionally untracked files
– Accepts wildcards/patterns (https://git-scm.com/docs/gitignore)

● Try to follow the commit good practices: unstage training-01.txt, commit
the .gitignore, and then add again training-01.txt

Exercise

$ cat ‘*.dat’ > .gitignore
$ git status
$ git add .gitignore

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 30

Starting to feel the power of
git...

Exercise

$ git commit -m “Include lesson on keeping critical spirit”
$ git add training-02.txt
$ echo ‘Git or Git not. There is no try.’ >> training-02.txt
$ echo -ne ‘\n-+ Some useful subcommands:\n’ >> training-02.txt
$ git add -p training-02.txt
$ git commit -m “Force to take a side”
$ git add training-02.txt
$ git commit -m “Prepare placeholder for command reference”
$ git log

● Fine control over what changes to include in the next commit
– Modified files can be partially staged
– Interactive command: follow instructions $ git add -p <file(s)>

https://git-scm.com/docs/gitignore

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 31

Fine control over staging
● Modifications adding a line are marked as +

(and green color if available)
● Modifications removing a line are marked

as – (and red color, if available)

● y will stage everything between blue lines DO NOT WANT THIS→ →
● n will not stage the shown lines DO NOT WANT THIS→ →
● ...
● h/? HELP, shown what does it means every option→

● We need to edit manually the change: e it will open and editor →

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 32

Fine control over staging
● Editor shown: vim
● Editor is selected depending the git

configuration (see details in
https://git-scm.com/docs/git-config)

● Instructions in the last lines
● We want to keep just the first line to stage in a separate commit

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 33

Fine control over staging
● Editor shown: vim
● Editor is selected depending the git

configuration (see details in
https://git-scm.com/docs/git-config)

● Save the changes
● Only the ‘Git or Git not. There is no try’ sentence has been staged

● the removed lines are part of the modified changes but not staged

https://git-scm.com/docs/git-config

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 34

Look at the change details

Exercise

$ git commit -m “Include the needs to take sides”
$ git diff
$ git add training-02.txt
$ git commit -m “Prepare placeholder for command reference”
$ git log

● Shows what it is changed (modified) but not staged
● It can be used to compare staged changes with the

last commit
● It can be used to compare changes introduced

between different commits

$ git diff

$ git diff --staged

$ git diff <c1> <c2>

Not staged modifications

https://git-scm.com/docs/git-config

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 35

Amend a mistake (unmodify)

$ git checkout -- training-02.txt
$ git status

● How to ignore changes in a modified file

$ git checkout -- <file>

$ echo -ne ‘\n-+Some useful subcommands:\n’ >> training-02.txt

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 36

Reviewing history

Exercise

$ git add training-02.txt
$ git commit -m “Prepare placeholder for command reference”
$ git log

● Shows commits made in reverse
chronological order
(with no options)

– Full of options to extract the exact information you’re looking for

– Try this one:

$ git log --patch $ git log --pretty=oneline

$ git log --graph -–decorate -–abbrev-commit --pretty=oneline

...

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 37

Amend a commit

$ git reset training-01.txt
$ git status

● How to add forgotten files and/or changes, or recreate the last commit message
– Just add whatever you forgot, stage them and commit again using

it will open your editor: you can change the message or keep it
– Useful to minor improvements, avoiding messages in the commit history like

“Forgot to include some files” or “Fix Typo in last commit” …

CAREFUL: Do not amend commits pushed somewhere else, otherwise will cause
problems with your team collaborators

$ git commit --amend

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 38

The awaken of the branches

Exercise

$ git checkout -b dark-side
$ echo ‘I am your father’ > approach-darkside.txt
$ git add approach-darkside.txt
$ git commit -m “Reveal the secret”
$ echo ‘If you only knew the power of CVS’ >> approach-darkside.txt
$ echo ‘Join me and I will complete your training.’ >> approach-
darkside.txt
$ git commit -a -m “Try to convince towards the dark side”
$ echo ‘You were right… you were right about me’ > coming-back.txt
$ git add coming-back.txt
$ git commit -m “Return to git”
$ git rm approach-darkside.txt
$ git commit -m “Culminate the redemption”
$ git checkout master
$ git merge dark-side
$ git branch -d dark-side

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 39

The awaken of the branches

Exercise

$ git checkout -b dark-side

● Creates a new branch and creates a pointer
to the last snapshot

● A branch is a lightweight movable pointer
● master is the default branch

● HEAD is a special pointer to identify the current
branch of the working directory area

444b6 f6893 c4c9d43e6b b4456

masterdark-side

HEAD

$ git branch

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 40

The awaken of the branches

Exercise

$ echo ‘I am your father’ > approach-darkside.txt
$ git add approach-darkside.txt
$ git commit -m “Reveal the secret”
$ echo ‘If you only knew the power of CVS’ >> approach-darkside.txt
$ echo ‘Join me and I will complete your training.’ >> approach-
darkside.txt
$ git commit -a -m “Try to convince towards the dark side”
$ echo ‘You were right… you were right about me’ > coming-back.txt
$ git add coming-back.txt
$ git commit -m “Return to git”
$ git rm approach-darkside.txt
$ git commit -m “Culminate the redemption”
$ git checkout master
$ git merge dark-side
$ git branch -d dark-side

c4c9d b4456

master

dark-side

HEAD

88716

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 41

The awaken of the branches

Exercise

$ echo ‘If you only knew the power of CVS’ >> approach-darkside.txt
$ echo ‘Join me and I will complete your training.’ >> approach-
darkside.txt
$ git commit -a -m “Try to convince towards the dark side”
$ echo ‘You were right… you were right about me’ > coming-back.txt
$ git add coming-back.txt
$ git commit -m “Return to git”
$ git rm approach-darkside.txt
$ git commit -m “Culminate the redemption”
$ git checkout master
$ git merge dark-side
$ git branch -d dark-side

c4c9d b4456

master

dark-side

HEAD

0baa188716

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 42

The awaken of the branches

Exercise

$ git checkout master
$ ls
$ git log

$ git checkout dark-side

c4c9d b4456

master

dark-side

HEAD

0baa188716

● Working directory is now populated with the
last snapshot of master (so, the file
approach-darkside.txt is not there)

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 43

The awaken of the branches

Exercise

$ echo ‘You were right… you were right about me’ > coming-back.txt
$ git add coming-back.txt
$ git commit -m “Return to git”
$ git rm approach-darkside.txt
$ git commit -m “Culminate the redemption”
$ git checkout master
$ git merge dark-side
$ git branch -d dark-side

c4c9d b4456

master

dark-side

HEAD

c9e1a88716 0baa1

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 44

The awaken of the branches

Exercise

$ git rm approach-darkside.txt
$ git commit -m “Culminate the redemption”
$ git checkout master
$ git merge dark-side
$ git branch -d dark-side

c4c9d b4456

master

c9e1a88716 0baa1

dark-side

HEAD

f17a1

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 45

The awaken of the branches

Exercise

$ git checkout master
$ git merge dark-side
$ git branch -d dark-side

c4c9d b4456

master

c9e1a88716 0baa1

dark-side

HEAD

f17a1

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 46

The awaken of the branches

Exercise
$ echo ‘Fear is the path to the concurrent side’ >> keepaneyeonit.txt
$ git commit -a -m “Be vigilant against the concurrent side”

c4c9d b4456

master

c9e1a88716 0baa1

dark-side

HEAD

f17a1

8d4ad

● Project history divergent
– Always it is possible to switch back and forth to

continue a history line

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 47

The awaken of the branches

Exercise
$ git merge dark-side

c4c9d b4456

master

c9e1a88716 0baa1

dark-side

HEAD

f17a1

8d4ad

● All history is kept

e2dcc

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 48

The awaken of the branches

Exercise
$ git branch -d dark-side

c4c9d b4456

master

c9e1a88716 0baa1

HEAD

f17a1 8d4ad

● Branch is removed and history is flatten
● If branch wasn’t merged, the deletion will be stopped

e2dcc2

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 49

Git: a distributed VCS

● Git is distributed collaborative→
– Each user of project team get a local copy of

the repository (from a server)
● Use it locally (modify-save)
● Unify changes → MERGE

● More than git servers:
– Web applications for complete

DevOps: Issues, wiki, CI/CD, …

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 50

Gitlab: a DevOps plattform

● DevOps platform. In adition to the git repository server it provides:
– user management,
– role assignation to fine control user permissions,
– web interface to the git repositories, allowing nice

commit history navigation, code reviewing, ...
– a complete issue system,
– a complete CI/CD framework
– a wiki system for documentation,
– … and much more: https://about.gitlab.com/features

● Your server for DAMIC-M collaboration software projects: https://gitlab.in2p3.fr/damicm
– It is hosted and maintained by the CC-IN2P3 at Lyon (France)
– You should be part of the gitlab group DAMIC-M

Otherwise, contact mariangela.settimo@subatech.in2p3.fr

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 51

Gitlab basics

● Project: a repository
● Group: a namespace allowing to assemble project together and grant member access to

several projects at once
– You belong to the gitlab group DAMIC-M,

● Role: set of allowed actions and permissions for an user

● Group permissions: https://docs.gitlab.com/ee/user/permissions.html#group-members-permissions

● Project permissions: https://docs.gitlab.com/ee/user/permissions.html#project-members-permissions

– Check if your role is suitable to do your job within the group,
otherwise contact mariangela.settimo@subatech.in2p3.fr

Most restrictive Least restrictive

https://about.gitlab.com/features
https://gitlab.in2p3.fr/damicm
mailto:mariangela.settimo@subatech.in2p3.fr

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 52

Collaborative working

● Git is distributed collaborative→
– Each user of project team get a local copy of

the repository (from a server)
● Use it locally (modify-save)
● Unify changes → MERGE

Exercise

$ git clone git@gitlab.in2p3.fr:damicm/damicm-school-git.git
$ cd damicm-school-git
$ git checkout -b <name it yourself>
[do some changes where ever you want, create things maybe?]
$ git add <your changed files>
$ git commit -m <Your meaningful and concise message>
$ git push

https://docs.gitlab.com/ee/user/permissions.html#group-members-permissions
https://docs.gitlab.com/ee/user/permissions.html#project-members-permissions
mailto:mariangela.settimo@subatech.in2p3.fr

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 53

Collaborative working

Exercise

$ git clone git@gitlab.in2p3.fr:damicm/damicm-school-git.git
$ cd damicm-school-git
$ git checkout -b <name it yourself>
[do some changes where ever you want, create things maybe?]
$ git add <your changed files>
$ git commit -m <Your meaningful and concise message>
$ git push

clone

● Download an exact copy of the server repository
in your local computer, creates all areas and populates
the working area with the last snapshot of the
default branch (master)
– Now you can (create-)modify-save as we’ve

learned so far...

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 54

Git over SSH

● But…

– The server is configured to not allow authentication by asking you user/password
● You need to add your SSH public key to Gitlab, either

a) Create the SSH key pair in the local computer:
Further instructions: https://docs.gitlab.com/ee/ssh/README.html#generating-a-new-ssh-key-pair

b) Use an existing SSH key pair in your local computer, look at the /home/user/.ssh folder

● Get the public key (.pub) and copy the content into the clipboard

$ ssh-keygen -t ed25519 -C “username@localcomputer”

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 55

Add SSH public key

Click on

https://docs.gitlab.com/ee/ssh/README.html#generating-a-new-ssh-key-pair

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 56

Add SSH public key

Click on

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 57

Add SSH public key

Paste here the
content of the
public key

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 58

Add SSH public key

Click on

Useful name will contain the
name of your local computer

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 59

Remote repositories

Exercise
$ git clone git@gitlab.in2p3.fr:damicm/damicm-school-git.git
$ cd damicm-school-git
$ git remote -v

● Remotes are versions of the project hosted
somewhere (either in the Internet or in your local
computer in order location).
– origin: is the per default name, but can be changed

● Remotes branches in the local repository are references
to the state of the remote repository
– remote_name/branch_name
– Same behavior than before BUT

cannot be moved locally: it’s git who takes care
internally whenever needs to move them

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 60

● There is nothing preventing any git repository, including local
to be a remote of another repository (as long as you have access to it)

– Assuming you clone damimc-school-git at folder under your home: $HOME/repos

● This is the important thing to remember: the path ends is the .git directory
● And now get all the content to your copy

Your local repo is also a
remote

$ git init a-copy-of-damicm-school
$ cd a-copy-of-damicm-school
$ git remote add local-damicm $HOME/repos/damicm-school-git/.git

$ git pull local-damimc master
local-damicm

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 61

Collaborative Working

Exercise

$ git pull origin master
$ git checkout -b <branch_name>
[do some changes wherever you want and commit your changes]
$ git push origin <branch_name>

● Synchronizes your local repository with the remote
– Once it’s done, all your collaborators have access

to your changes
– If there are collapsing changes, git will prevent

pushing and it will instruct you what to do
(maybe pull first, merge, …)

● push/pull is the mechanism to unify the
collaborative infrastructure (via merge)

origin

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 62

Distributed Workflows:
Centralized

● If you were trying to push the branch master:

– DAMIC-M group default configuration prevents pushing in master branch (protected)
without making use of the merge request mechanism

push/pull

push/pullpu
sh

/p
ul

l

Not allowed
in master

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 63

Distributed Workflows:
Integration-manager

● Instead, the central repository can be push only by a maintainer. The developers must:
– Fork the repository: a copy of the repository; it creates a new remote repository

owned by the developer and linked to the original repo

fork
fork

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 64

Distributed Workflows:
Integration-manager

● Instead, the central repository can be push only by a maintainer. The developers must:
– Fork the repository: a copy of the repository; it creates a new remote repository

owned by the developer and linked to the original repo
– Implement changes
– Push to their public owned repo

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 65

Distributed Workflows:
Integration-manager

● Instead, the central repository can be push only by a maintainer. The developers must:
– Fork the repository: a copy of the repository, creates a new remote repository owned

by the developer
– Implement changes
– Push to their public owned repo
– Merge request: request

to include their changes
into the central repository

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 66

Distributed Workflows:
Integration-manager

● Instead, the central repository can be push only by a maintainer. The developers must:
– Fork the repository: a copy of the repository, creates a new remote repository owned

by the developer
– Implement changes
– Push to their public owned repo
– Merge request: request

to include their changes
into the central repository

– The maintainer reviews
the changes and eventually
merges (or not)

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 67

Distributed Workflows:
Integration-manager

● Instead, the central repository can be push only by a maintainer. The developers must:
– Fork the repository: a copy of the repository; it creates a new remote repository

owned by the developer and linked to the original repo

– Site admin has configured
the gitlab instance to not
allow users create projects
in their personal
namespaces → Impossible to fork!

fork
fork

CANNOT BE DONE in
gitlab.in2p3

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 68

Recommended workflow

● In order to be able to apply the integration-manager workflow use → branching approach
instead.

1. Pull before start to work copy the last changes into your local repo→

origin

$ git pull origin <branch>

a.k.a. Feature branching

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 69

Recommended workflow

● In order to be able to apply the integration-manager workflow use → branching approach
instead.

1. Pull before start to work copy the last changes into your local repo→

2. Create a new branch to implement your changes

New branch

$ git pull origin <branch>

$ git pull origin <branch>

a.k.a. Feature branching

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 70

Recommended workflow

● In order to be able to apply the integration-manager workflow use → branching approach
instead.

1. Pull before start to work copy the last changes into your local repo→

2. Create a new branch to implement your changes

i. If working with other team mates in the same
implementation, push frequently

New branch
origin

New branch

$ git pull origin master

$ git checkout -b <new_branch>

a.k.a. Feature branching

$ git push origin <new_branch>

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 71

Recommended workflow

● In order to be able to apply the integration-manager workflow use → branching approach
instead.

1. Pull before start to work copy the last changes into your local repo→

2. Create a new branch to implement your changes

3. Once the implementation is finished, push and create a merge request with the master

 Follow the link or Push the button

$ git pull origin master

$ git push origin <new_branch>

a.k.a. Feature branching

$ git checkout -b <new_branch>

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 72

Merge request

● Gitlab mechanism to discuss and review implementations
between team mates
– Fill the form request precisely as

possible following the best
practices described for commits:

● Title: Concise summary of the
changes (50 chars or less)

● Description: Summarize the changes,
what, why and how

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 73

Merge request

● Gitlab provides a place where to discuss the request,
with all relevant commits, files in place, and
mechanisms to update the request with new commits

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 74

Merge request

● Once the maintainer is happy, the request is accepted
and the set of commits are merged into the master branch

developer’s branch

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 75

Merge request

Exercise

MERGE REQUEST your last push:
Go to the gitlab repository and Create a merge request

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 76

Interlude 3: Branching
Strategy

● Decide which branching scheme are you going to work (or adapt yourself to what
was decided in your collaboration project…)

● All-in-master branch
● Feature branching (already discussed)
● GitFlow
● GitHub flow
● GitLab flow
● …

 See BACKUP SLIDES for some details

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 77

Daily work coding at Gitlab

● Some useful functionalities when developing with the gitlab.in2p3.fr
instances:

– Repository history
– Issue tracker
– Wiki
– CI/CD

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 78

Repository History

● Everything git can do in command line, plus extra functionalities… browser around

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 79

Issue Tracker

● The fundamental medium to:
– Discuss the implementation of a new idea
– Track tasks and work status
– Accept feature proposals, questions, support requests or bug reports
– Elaborate on new code implementations

● Centralized, stored for future reference

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 80

Issue Tracker

● Labels: help to quickly identify and classify issues

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 81

Issue Tracker

● Milestones: a set of issues to be solved
– Useful to identify releases, tags snapshot, ...

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 82

Interlude 4: git tags

● Git has the ability to tag specific points of the repository history (as most of VCSs)
– For instance, to mark release point

● Annotated tags: provide the tag name (-a) and a tagging message (-m)

– Don’t provide the -m option if you want to write a long message, the editor
will be launched as in the case of a commit without -m

– Lightweight tags (git tag v0.1-alpha) do not store extra info, as annotated tags do
● It is possible to tag at any moment (an old commit)

● Tags are not pushed by default, to push them:

$ git tag -a v0.1-alpha -m “Alpha release”

$ git tag -a v0.1-alpha <commit-SHA>

$ git push <remote> --tags

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 83

Issue Tracker

● Releases: snapshot of the source, build output and other metadata associated to a
tagged version of the code
https://docs.gitlab.com/ee/user/project/releases/#create-a-release

– You can create a release from an annotated tag

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 84

Issue Tracker

ExerciseExercise
* Take a look at the list of issues, choose one and try to
participate in the discussion
https://gitlab.in2p3.fr/damicm/damic-school-git/-/issues

* Create a new issue

● In order to create a new issue, same best
practices than commits/merge request

https://docs.gitlab.com/ee/user/project/releases/#create-a-release

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 85

CI/CD

● CI: In every push, the project is tested and validated
● CD: In every push, the project is deployed

Dev Ops

https://gitlab.in2p3.fr/damicm/damic-school-git-/issues

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 86

CI/CD

● The GitLab CI/CD tool will run some pre-defined scripts every time a push is sent
to the repository, which builds and test the software. After revision, the software is
deployed

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 87

CI/CD

● Runners: agents that run CI/CD jobs
● Create a .gitlab-ci.yml file configure instructions for the GitLab CI/CD→

– Structure and order of jobs that runner should execute
– Decisions runner should make when specific conditions are encountered

ExerciseExercise

Setup CI in the repository

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 88

CI/CD

● Create a .gitlab-ci.yml file

ExerciseExercise

File creation on the file edit web interface

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 89

CI/CD

● Very useful to validate the syntax and the structure of the file

ExerciseExercise

File creation on the file edit web interface

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 90

CI/CD

ExerciseExercise

Setup CI in the repository

● Once the .gitlab-ci.yml file is pushed to the repo, the Gitlab CI/CD tool is activated

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 91

CI/CD

ExerciseExercise

Setup CI in the repository

● Jobs can be monitored, as well as test results

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 92

 May the

be with you

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 93

● Git: https://git-scm.com/book/en/v2
● Git commands reference:

– git --help
– https://git-scm.com/docs

● Gitlab: https://docs.gitlab.com/ee/README.html

Selected bibliography

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 94

The name

● From the README.md of the project
https://git.kernel.org/pub/scm/git/git.git/tree/README.md

The name "git" was given by Linus Torvalds when he wrote the very
first version. He described the tool as "the stupid content tracker"
and the name as (depending on your mood):
– random three-letter combination that is pronounceable, and not

actually used by any common UNIX command. The fact that it is a
mispronunciation of "get" may or may not be relevant.

– stupid. contemptible and despicable. simple. Take your pick from the
dictionary of slang.

– "global information tracker": you're in a good mood, and it actually
works for you. Angels sing, and a light suddenly fills the room.

– "goddamn idiotic truckload of sh*t": when it breaks

https://git-scm.com/book/en/v2
https://git-scm.com/docs
https://docs.gitlab.com/ee/README.html

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 95

GitFlow branching

● GitFlow:

– Master: Stable, direct to production
– Develop: Unstable, all feature changes are pushed

 here
– Feature: Checkout from Develop, push back to it
– Hotfix: Check out from Master, push back to Master

 and Develop
– Release: Semi-stable, ready to release, following with a few bugfixes. Checkout from

Develop, push back to both Master and Develop
● Master and develop last forever
● Feature branch is created whenever a new feature, or not-urgent bug, is needed for the

next release
● Release branch is used to intensively tested before merged to master
● Hotfix branch is used to fix a serious bug which should be merge immediately into master

https://git.kernel.org/pub/scm/git/git.git/tree/README.md

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 96

GitHub branching

● Github flow,

– Master: direct to production, every branch is
checkout from here

– Whenever a work is needed (whether is a feature,
a bugfix or any other) a branch is created from
master. Once the work is done, it is reviewed and fully tested,
and merged into master, and pushed out to production.
● Using pull request mechanism to trigger the review, tests and deployment

DAMIC-M Software School, Jan. 11th 2021 GIT introduction -- jordi.duarte@cern.ch 97

GitLab branching

● GitLab flow,

– Master: features and fixes are created in branches
starting from and merged to master

● Using merge request to trigger reviews, tests, and
checkout to staging branch

– Staging: git stage concept, used as interface between master and production
– Production: long-term, release branch. The tag mechanism is used to identify each

 version being released

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97

