Enigmass WP1 The origin of mass and the search for new physics

Benoit Clément, UGA/LPSC Enigmass ICS Meeting, 18/01/2021

What's the problem

Standard Model has been completed in 2012 by the discovery of the Higgs boson

explains mass of fermions and gauge bosons ...but brings a few more questions : Why is m_H so different from Planck of GUT scales ? Is the Higgs potential stable ? Why are neutrino masses so small ?

Questions from QCD

Strong interaction is a well established theory ... but :

no theoretical justification for the absence of CP violation in strong interaction no clear understanding of what happens at low energy

Plenty of questions from cosmology

Recent observation lead to a well described A-CDM cosmological model

... but a lot of is content isn't described by the standard model

Dark Energy

Dark Matter

Matter-Antimatter Asymmetry

Goal of WP 1

Expand our understanding the standard model to include those phenomena

- at the theoritical / phenomenological level : LAPTH and LPSC

- * Models
- * Numerical tools
- * Connection to experiments

- at the experimental level : LAPP and LPSC

- * Building of detector
- * Operation of detectors
- * Data analysis

By contributing to the worldwide effort on these topics through international collaborations :

nCTEQ, ATLAS, ALICE, LHCb, n2EDM, SuperNEMO, Dune, STEREO, Ricochet...

Theory @ LPSC

Theory group at LPSC covers two wide domains of activity, closely related to the experimental studies at the lab.

QCD at both high- and low-energy

Study of the nucleon & nucleus PDFs (contribution to nCTEQ) Lattice QCD: novel formalism for LQCD renormalization, simulations with 4 dynamical quarks

Axions (strong CP problem) : models, LHC and low-E signatures, cosmological aspects

Beyond Standard Model : from models, to collider phenomenology and to astrophysics and cosmology

SUSY at colliders, effective approaches & specific models : consistent effort in the establishment of data-interpretation strategies

Generic NP : "simplified-model" approach (code SModelS), calculation of RGE evolution (code Pyr@te)

Dark Matter : diverse expertise, from DM at colliders (EFTs or models) to quantitative predictions for small-scale DM structures

LAPTh is dedicated entirely to theory and covers a large spectrum of WP1 subjects with overlaps to WP 2/3

Higher-order computations, and tools

New method to perform NNLO + parton shower simulations (public codes) New approach to 2-loop integrals with complex masses

Higgs and new physics

Automatized tool for BSM at 1 loop through "SloopS"

The HEP – Dark Matter interface

Development of particle-DM calculation tools : MicrOMEGAs and DM@NLO

Flavour physics

Flavour violation within SUSY GUTs & leptonic observables B- and K-physics phenomenology, from models to observables (synergy with LHCb

@ LAPP)

Low-energy frontiers

Probing Yukawa couplings from atomic physics

Collider Physics : ATLAS

Contribution to data analysis :

Standard Model : di-boson production (WZ and $Z\gamma$) (LAPP)

New physics : resonances \rightarrow di-photons and di-leptons (LAPP)

Higgs : properties, production, decays (LPSC and LAPP)

LAPP contributed to 1st evidence of the Higgs (in H \rightarrow $\gamma\gamma)$

Evidence of the ttH channel and HH production (LPSC) Long-lived particles & "dark" strong sectors (LPSC)

Technical contributions :

Inner Tracker (ITk) : LAPP & LPSC in charge of 12.5% of pixel outer barrel The "CO2 cooling" project : Cooling of the trajectographs for HL-LHC via diphasic CO2 :

prototype financed by ENIGMASS at LPSC

measurement of the support's thermal performance at LAPP

LAr calorimeter : LPSC Electronics and LAPP collaborating on various tasks related to the PCBs

Many other : computing...

Collider Physics : ALICE (LPSC)

How to probe QCD in conditions resembling the most the early Universe ?

Building and probing a Quark-Gluon Plasma (QCD analog of e.m. plasmas)

- heavy ion collison at LHC (ALICE detector)
- high energy density causes partons to deconfine.

merges non-perturbative & finite T QCD

LPSC is involved in

- Data analysis of jet quenching:

Jets propagating in a hot & dense medium display a marked reduction in energy

Open topics : Path-length dependence? Differences w.r.t. in-vacuum propagation? Jet substructure?...

- Detector upgrade : FOCAL

new improved calorimeter aiming for clean-er probes (e.g. jet-photon correlations)

Collider Physics : LHCb (LAPP)

New effects through distortions to can be searched for accurately measured and accurately calculated rare processes

Technical expertise :

Unique expertise on calorimetry and photon reconstruction LHCb Upgrade I [leading to a 5x increase in LHCb lumi] & subsequent Run-3 startup (~ 2022)

Physics topics :

Progress on the CKM angle γ (SM "standard candle") through analyses of B \rightarrow Dhh (h= π or K)

 $B_s \rightarrow J/\psi \eta(')$ to measure CPV induced by Bs – Bs mixing (tiny in the SM)

Synergy with LAPTh :

Collaboration on radiative modes (including students in co-supervision) Current focus: $B_s \rightarrow \mu\mu\gamma$: never measured, will be a new test of b \rightarrow s transitions

Intensity frontier: n2EDM

Probing new sources of CP-violation through low energy processes : electric dipole moment of the neutron

Search for a coupling between the neutron spin ant an electric field

T and P violating process Look for tiny variations of the neutron larmor frequency in presence of E and B fields. Use stored ultracold neutron (large precession times) Experiment based at PSI (Switzerland)

nEDM best limit: |d_n|<1,8x10⁻²⁶ e ⋅cm [PRL 2020]

result obtained by double blind analysis by two independent analysis teams, one led by the LPSC group.

unprecedented understanding of the magnetic field and various systematic effects

New experiment, n2EDM, being assembled (≤ 2022)

1 o.o.m. improvement expected over 5 years LPSC is in charge of :

building several major components, performing R&D on Hg magnetometry has a recognized expertise in the analysis ERC Grant of G. Pignol

Neutrino Physics : Stereo and Ricochet

Probing neutrino properties @ILL (research reactor in Grenoble)

Search for sterile neutrino : STEREO Experiment

Probing the so called reactor anomaly Measure absolute flux and spectrum from ²³⁵U fission Strong local synergy:

ILL, LAPP, LPSC with support from ENIGMASS

Coherent Elastic v-N Scattering (CEvNS) : RICOCHET project

Scattering between a v and all nucleons in a nucleus Allows a precision measurement of low-E v spectrum Important measurement for many topics : v properties, non-standard interactions, SNe dynamics, "v floor", ... 1% precision by 2024 with a strong involvement of **LPSC**

Neutrino Physics : SuperNEMO and DUNE

Search for Majorana neutrino : 0v66 decay at SuperNEMO

Installed at Laboratoire Souterrain de Modane (LSM, part of LPSC) Use scintillators to fully reconstruct $\beta\beta$ decays

Two phases :

demonstrator (6.3kg of 82Se, 1st data ~2021) : τ>6.5 ·1024 yrs

"full" SuperNEMO (100kg, multi-module) $\tau > 1026$ yrs

Important contribution of LAPP : Detector commissioning, coordination, tracker repair

DUNE: the ultimate v experiment (~2026)

Precision v physics : oscillations, mass hierarchy, CP-violation phase Strong involvement of LAPP and LPSC

- * ProtoDUNE-DP (CERN): installation, operation, analysis, CR tagger
- * Several technical tasks: mechanics, charge readout, simulation

Conclusion

WP1 is central to ENIGMASS's mission

- it covers what is traditionally called "particle physics" from low to high energies both from the theoretical and experimental point of view

- the goal is to contribute to expand our understanding the standard model and to look beyond

All ENIGMASS labs are involved in many ambitious, well-recognized projects, much of a larger span :

nCTEQ, ATLAS, ALICE, LHCb, n2EDM, SuperNEMO, Dune, STEREO, Ricochet... Major technical and analysis contribution for all labs to these projects Complementary activities within the labs

Several synergies between labs already exists... but the LABEX can contribute to expand them