The COBRA double beta decay experiment

Oliver Schulz on behalf of the COBRA collaboration

technische universität _____Physik dortmund _____E-IV oliver.schulz@tu-dortmund.de

2nd LSM Extension Workshop, October 16, 2009

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

 Study of ultra-rare radioactive decays, in particular neutrinoless double-beta (0νββ) decays

- Study of ultra-rare radioactive decays, in particular neutrinoless double-beta (0νββ) decays
- Goal: Array of 64000 enriched CdZnTe Detectors, massing about 400kg, sensitive to decays with half lives exceeding 10²⁶ years

- Study of ultra-rare radioactive decays, in particular neutrinoless double-beta (0νββ) decays
- Goal: Array of 64000 enriched CdZnTe Detectors, massing about 400kg, sensitive to decays with half lives exceeding 10²⁶ years

he universität

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

• Primary Focus: $0\nu\beta\beta$ -decay of ¹¹⁶Cd

Collaboration Members

TU Dortmund TU Dresden Freiburg Materials Research Center University of Hamburg University of Erlangen

Washington University at St. Louis

University of Bratislava

University of Jyvaskyla

University of La Plata

nische universität

-

JINR Dubna

Supporting Institutes: Jagellonian University(Poland), Los Alamos Nat. Lab. (USA), University of Michigan (USA)

Why use CdZnTe?

- Source = Detector
- ► Contains 9 0νββ candidate isotopes. Most interesting: ¹¹⁶Cd, ¹⁰⁶Cd, ¹³⁰Te
- ▶ High Q-values (¹¹⁶Cd above 2615 keV)

Why use CdZnTe?

- Source = Detector
- ► Contains 9 0νββ candidate isotopes. Most interesting: ¹¹⁶Cd, ¹⁰⁶Cd, ¹³⁰Te
- ▶ High Q-values (¹¹⁶Cd above 2615 keV)

- \blacktriangleright Semiconductor \rightarrow Good energy resolution, pure material
- Operation at room temperature, easy handling

$\mathbf{0}\nu\beta\beta$ Candidate Isotopes in CdZnTe

lsotope	nat. ab. (%)	Q (keV)	Decay Mode
70 Zn	0.62	1001	$\beta - \beta -$
$^{114}\mathrm{Cd}$	28.7	534	$\beta - \beta -$
$^{116}\mathrm{Cd}$	7.5	2809	$\beta - \beta -$
$^{128}\mathrm{Te}$	31.7	868	$\beta - \beta -$
$^{130}\mathrm{Te}$	33.8	2529	$\beta - \beta -$
$^{64}\mathrm{Zn}$	48.6	1096	$\beta + / EC$
$^{106}\mathrm{Cd}$	1.21	2771	$\beta + \beta +$
$^{108}\mathrm{Cd}$	0.9	231	EC/EC
$^{120}\mathrm{Te}$	0.1	1722	eta+/EC

technische universität

(ロ)、

$\mathbf{0}\nu\beta\beta$ Candidate Isotopes in CdZnTe

lsotope	nat. ab. (%)	Q (keV)	Decay Mode
70 Zn	0.62	1001	$\beta - \beta -$
$^{114}\mathrm{Cd}$	28.7	534	$\beta - \beta -$
$^{116}\mathrm{Cd}$	7.5	2809	$\beta - \beta -$
$^{128}\mathrm{Te}$	31.7	868	$\beta - \beta -$
$^{130}\mathrm{Te}$	33.8	2529	$\beta - \beta -$
$^{64}\mathrm{Zn}$	48.6	1096	$\beta + / EC$
$^{106}\mathrm{Cd}$	1.21	2771	$\beta + \beta +$
$^{108}\mathrm{Cd}$	0.9	231	EC/EC
$^{120}\mathrm{Te}$	0.1	1722	eta+/EC

technische universität

(ロ)、

Isotopes and Background

COBRA Sensitivity

$$T_{1/2} \propto \sqrt{\frac{M \times t}{\Delta E \times B}}$$

Cobra Setup at LNGS

- COBRA experimental setup located at Laboratori Nazionali del Gran Sasso (LNGS), Italy
- Underground location, 1400 m under Gran-Sasso massif, 3700 m water equivalent

Cobra Setup at LNGS

- COBRA experimental setup located at Laboratori Nazionali del Gran Sasso (LNGS), Italy
- Underground location, 1400 m under Gran-Sasso massif, 3700 m water equivalent
- Past: Ran different setups, installed arrays with up to 64 CdZnTe coplanar-grid detector crystals

he universität

E nar

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

 Currently running test array of 8 background improved crystals

- Setup rests on elastic vibration dampeners embedded in sand.
- 70mm Borated PE as Neutron shield

- Setup rests on elastic vibration dampeners embedded in sand.
- 70mm Borated PE as Neutron shield
- Faraday-Cage

- Setup rests on elastic vibration dampeners embedded in sand.
- 70mm Borated PE as Neutron shield
- Faraday-Cage
- Lead shielding with clean lead in inner layers and copper core

- Setup rests on elastic vibration dampeners embedded in sand.
- 70mm Borated PE as Neutron shield
- Faraday-Cage
- Lead shielding with clean lead in inner layers and copper core

 Copper holder for 4 Delrin (POM) crystal layers (16 crystals per layer)

- Setup rests on elastic vibration dampeners embedded in sand.
- 70mm Borated PE as Neutron shield
- Faraday-Cage
- Lead shielding with clean lead in inner layers and copper core

 Copper holder for 4 Delrin (POM) crystal layers (16 crystals per layer)

Background issues

Major background sources were:

- ► Red passivation coating on CdZnTe crystals → Using crystals with new, clear coating now, alternative coating under test
- Environmental Radon
 - \rightarrow Set up flushing system with filtered Nitrogen

Background issues

Major background sources were:

- ▶ Red passivation coating on CdZnTe crystals
 → Using crystals with new, clear coating now,
 - alternative coating under test
- Environmental Radon
 - \rightarrow Set up flushing system with filtered Nitrogen

che universität nd ᆿ∽়⊲়ে

イロト イポト イヨト イヨト

- Also: Had to find clean and reliable system to connect detectors
 - \rightarrow New connecting system, using
 - special conductive glue and thin gold wire

Array of 4 Crystals, Clear Coating

Background Reduction So Far

technische universität

< 口 > < 同

Background in ROI around 2809 keV:
 < 8 counts/keV/kg/year

Sensitivity to the ¹¹⁶Cd $2\nu\beta\beta$ Decay

Challenges

► Scale up isotope mass → produce detectors enriched to 90% ¹¹⁶Cd content.

sche universität

∃ <\0<</p>

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Further reduce background
- Improve energy resolution
- Veto background events

Challenges

- Scale up isotope mass
 - \rightarrow produce detectors enriched to 90% $^{116}\mathrm{Cd}$ content.

sche universität

∃ <\0<</p>

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Further reduce background
- Improve energy resolution
- Veto background events

Detector production

 Collaboration member FMF Freiburg is researching CdZnTe crystal growth

Detector production

- Collaboration member FMF Freiburg is researching CdZnTe crystal growth
- Expect new test detectors this month
- ► Applied to DFG for procurement of 90% enriched Cd.

Challenges

- Scale up isotope mass
 - \rightarrow produce detectors enriched to 90% $^{116}\mathrm{Cd}$ content.

sche universität

∃ <\0<</p>

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Further reduce background
- Improve energy resolution
- Veto background events

Further background reduction

► Major upgrade of LNGS setup planned for summer 2010

- Surround detectors by scintillators
- Cleaner cables and materials
- Improved EM-radiation shielding
- Installed detector mass of about 400g CdZnTe
- Aim for $2\nu\beta\beta^{116}$ Cd decay.

Further background reduction

► Major upgrade of LNGS setup planned for summer 2010

- Surround detectors by scintillators
- Cleaner cables and materials
- Improved EM-radiation shielding
- Installed detector mass of about 400g CdZnTe
- Aim for $2\nu\beta\beta^{116}$ Cd decay.
- Accelerate materials screening process
 - Built new facility at TU Dortmund for material pre-screening
 - Additional facility planned at TU Dresden

ne universität

E nar

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Dortmund Low-Background facility (DLB)

- New HPGe Spectromety Facility at TU Dortmund, purpose built for COBRA
- ► Detector: Ultra-LB HPGe Detector, 60% eff.

Dortmund Low-Background facility (DLB)

- New HPGe Spectromety Facility at TU Dortmund, purpose built for COBRA
- ► Detector: Ultra-LB HPGe Detector, 60% eff.
- Surface location, but shallow-underground performance due to massive layered shielding
 - ▶ 325 t baryte concrete, 43 t cast iron above detector \rightarrow 10 m water-equivalent

he universität

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

- active muon veto
- layered inner shielding with neutron absorber

Dortmund Low-Background facility (DLB)

- New HPGe Spectromety Facility at TU Dortmund, purpose built for COBRA
- ► Detector: Ultra-LB HPGe Detector, 60% eff.
- Surface location, but shallow-underground performance due to massive layered shielding
 - $\blacktriangleright~325$ t baryte concrete, 43 t cast iron above detector $\rightarrow~10$ m water-equivalent

he universität

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

- active muon veto
- layered inner shielding with neutron absorber
- Currently reached 4.25 counts/kg/min (integrated, 40 - 2700 keV)
- Still room for improvement

DLB Schematic Drawing

technische universität dortmund

DLB, Detector and Muon Veto

Challenges

- Scale up isotope mass
 - \rightarrow produce detectors enriched to 90% $^{116}\mathrm{Cd}$ content.
- Further reduce background
- Improve energy resolution
- Veto background events

CdZnTe Detector Types

 Energy resolution and identification of BG-Events depends on choice of detector type.

CdZnTe Detector Types

 Energy resolution and identification of BG-Events depends on choice of detector type.

sche universität

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

- ► Two options for CdZnTe:
 - Coplanar Grid detectors
 - Pixelized detectors

CdZnTe Crystal with Coplanar Grid

 CPG: Two comb-shaped, differently biased anode grids create virtual "small pixel effect".

CdZnTe Crystal with Coplanar Grid

- CPG: Two comb-shaped, differently biased anode grids create virtual "small pixel effect".
- > Advantages: Simple, low background compatible.
- > Disadvantages: Less detailed information about events.

he universität

Image: A matrix a

CdZnTe Crystal with Coplanar Grid

- CPG: Two comb-shaped, differently biased anode grids create virtual "small pixel effect".
- > Advantages: Simple, low background compatible.
- > Disadvantages: Less detailed information about events.
- Currently used for the LNGS Setup, energy-only output

he universität

CPG Pulse shape analysis

technische universität dortmund

CPG Pulse shape analysis

 Pulse shape analysis will enable us to reject certain background types

technische universität

< □ > < 同 >

▶ Planned for LNGS upgrade in summer 2010.

Better energy resolution than CPG

- Better energy resolution than CPG
- \blacktriangleright Very detailed information about events \rightarrow TPC-like

- Better energy resolution than CPG
- \blacktriangleright Very detailed information about events \rightarrow TPC-like
- \blacktriangleright Massive background reduction due to particle identification: Potentially 3 orders of magnitude for α and γ

sche universität

- Better energy resolution than CPG
- \blacktriangleright Very detailed information about events \rightarrow TPC-like
- Massive background reduction due to particle identification: Potentially 3 orders of magnitude for α and γ
- But: Low-Background compatibility of frontend electronics still unknown

he universität

- Better energy resolution than CPG
- \blacktriangleright Very detailed information about events \rightarrow TPC-like
- \blacktriangleright Massive background reduction due to particle identification: Potentially 3 orders of magnitude for α and γ
- But: Low-Background compatibility of frontend electronics still unknown

he universität

Currently testing two systems at LNGS and Modane

Pixel Pitch

Tracking and energy resolution depends on pixel size

Pixel Pitch

- Tracking and energy resolution depends on pixel size
- Small pixels: Detailed tracking but reduced energy resolution
- ► Big pixels: Excellent energy resolution but reduced tracking

Pixel Pitch

- Tracking and energy resolution depends on pixel size
- Small pixels: Detailed tracking but reduced energy resolution
- ► Big pixels: Excellent energy resolution but reduced tracking
- ► Simulation of charge deposition and transport necessary to determine optimum pixel size → ongoing

- Medipix/Timepix (currently at Modane)
 - Small (55 micron) pixels
 - Not low-background optimized yet

- Medipix/Timepix (currently at Modane)
 - Small (55 micron) pixels
 - Not low-background optimized yet
- Polaris System, Univ. Michigan (currently at LNGS)

che universität nd ᆿ∽়⊲্∾

イロト 不得下 不同下 不同下

- Large (2000 micron) pixels
- Not low-background optimized yet

- Medipix/Timepix (currently at Modane)
 - Small (55 micron) pixels
 - Not low-background optimized yet
- Polaris System, Univ. Michigan (currently at LNGS)

che universität nd ⋾ ∽०००

イロト イポト イヨト イヨト

- Large (2000 micron) pixels
- Not low-background optimized yet
- ► CZT Pixel, Univ. St. Louis
 - Different pixel sizes available
 - ► First test with LB-optimized system in Winter 2009 at LNGS.

Particle Identification

technische universität

э

< □ > < 同 > < 三

- Particle tracks in a 55 micron timepix detector
- Easy particle identification

Particle Identification

Separation of events by type

Muon Track across whole detector

technische universität dortmund

Enhanced shielding

 Currently starting monte-carlo campaign to identify best shielding strategy.

Enhanced shielding

- Currently starting monte-carlo campaign to identify best shielding strategy.
- Possible candidate:

Enhanced shielding

- Currently starting monte-carlo campaign to identify best shielding strategy.
- Possible candidate:

technische universität

∃ \0 < \0</p>

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

► Interesting shielding option: Suspend detectors directly in liquid scintillator → preparing for tests at Uni Hamburg

Long-Term COBRA Roadmap

- Summer 2010: LNGS Test setup upgrade
- ▶ End of 2012: COBRA Technical Design Report

Long-Term COBRA Roadmap

- Summer 2010: LNGS Test setup upgrade
- ▶ End of 2012: COBRA Technical Design Report
- ► (Hopefully) 2013: Funding and location decision

Long-Term COBRA Roadmap

- Summer 2010: LNGS Test setup upgrade
- ► End of 2012: COBRA Technical Design Report
- ► (Hopefully) 2013: Funding and location decision
- COBRA perspective for Modane: After LSM extension in 2013, install full-size shielding with first prototype detector modules

Possible Large Scale COBRA Setup

► COBRA: A new innovative approach for the $0\nu\beta\beta$ -decay search, especially in ¹¹⁶Cd.

- ► COBRA: A new innovative approach for the $0\nu\beta\beta$ -decay search, especially in ¹¹⁶Cd.
- Despite small mass already some interesting results.

- ► COBRA: A new innovative approach for the $0\nu\beta\beta$ -decay search, especially in ¹¹⁶Cd.
- Despite small mass already some interesting results.
- ► Major upgrade of current setup in 2010.

► COBRA: A new innovative approach for the $0\nu\beta\beta$ -decay search, especially in ¹¹⁶Cd.

ne universität

E nar

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Despite small mass already some interesting results.
- ► Major upgrade of current setup in 2010.
- Compact sized full-scale setup.

► COBRA: A new innovative approach for the $0\nu\beta\beta$ -decay search, especially in ¹¹⁶Cd.

che universität nd ⋾ ∽०००

イロト 不得下 不同下 不同下

- Despite small mass already some interesting results.
- Major upgrade of current setup in 2010.
- Compact sized full-scale setup.
- Would be well suited for installation at Modane.