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The COBRA Experiment

I Study of ultra-rare radioactive decays, in particular
neutrinoless double-beta (0νββ) decays

I Goal: Array of 64000 enriched CdZnTe Detectors,
massing about 400kg,
sensitive to decays with half lives exceeding 1026 years

I Primary Focus: 0νββ-decay of 116
Cd
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Why use CdZnTe?

I Source = Detector

I Contains 9 0νββ candidate isotopes.
Most interesting: 116

Cd, 106
Cd, 130

Te

I High Q-values (116Cd above 2615 keV)

I Semiconductor → Good energy resolution, pure material

I Operation at room temperature, easy handling
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0νββ Candidate Isotopes in CdZnTe

Isotope nat. ab. (%) Q (keV) Decay Mode
70
Zn 0.62 1001 β − β−

114
Cd 28.7 534 β − β−

116
Cd 7.5 2809 β − β−

128
Te 31.7 868 β − β−

130
Te 33.8 2529 β − β−

64
Zn 48.6 1096 β+/EC

106
Cd 1.21 2771 β + β+

108
Cd 0.9 231 EC/EC

120
Te 0.1 1722 β+/EC



0νββ Candidate Isotopes in CdZnTe

Isotope nat. ab. (%) Q (keV) Decay Mode
70
Zn 0.62 1001 β − β−

114
Cd 28.7 534 β − β−

116
Cd 7.5 2809 β − β−

128
Te 31.7 868 β − β−

130
Te 33.8 2529 β − β−

64
Zn 48.6 1096 β+/EC

106
Cd 1.21 2771 β + β+

108
Cd 0.9 231 EC/EC

120
Te 0.1 1722 β+/EC



Isotopes and Background



COBRA Sensitivity
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Cobra Setup at LNGS

I COBRA experimental setup located at
Laboratori Nazionali del Gran Sasso (LNGS), Italy

I Underground location, 1400 m under Gran-Sasso massif,
3700 m water equivalent

I Past: Ran di�erent setups, installed arrays with up to 64
CdZnTe coplanar-grid detector crystals

I Currently running test array of
8 background improved crystals
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Construction and Shielding

I Setup rests on elastic vibration
dampeners embedded in sand.

I 70mm Borated PE as Neutron
shield

I Faraday-Cage

I Lead shielding with clean lead
in inner layers and copper core

I Copper holder for 4 Delrin (POM) crystal layers
(16 crystals per layer)
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Background issues

I Major background sources were:
I Red passivation coating on CdZnTe crystals

→ Using crystals with new, clear coating now,

alternative coating under test
I Environmental Radon

→ Set up �ushing system with �ltered Nitrogen

I Also: Had to �nd clean and reliable system
to connect detectors
→ New connecting system, using
special conductive glue and thin gold wire
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Array of 4 Crystals, Clear Coating



Background Reduction So Far
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I Background in ROI around 2809 keV:
< 8 counts/keV/kg/year



Sensitivity to the 116
Cd 2νββ Decay
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Challenges

I Scale up isotope mass
→ produce detectors enriched to 90% 116

Cd content.

I Further reduce background

I Improve energy resolution

I Veto background events
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Detector production

I Collaboration member FMF Freiburg
is researching CdZnTe crystal growth

I Expect new test detectors this month

I Applied to DFG for procurement of 90% enriched Cd.
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Further background reduction

I Major upgrade of LNGS setup planned for summer 2010
I Surround detectors by scintillators
I Cleaner cables and materials
I Improved EM-radiation shielding
I Installed detector mass of about 400g CdZnTe
I Aim for 2νββ116Cd decay.

I Accelerate materials screening process

I Built new facility at TU Dortmund

for material pre-screening
I Additional facility planned at TU Dresden
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Dortmund Low-Background facility

(DLB)

I New HPGe Spectromety Facility at TU Dortmund,
purpose built for COBRA

I Detector: Ultra-LB HPGe Detector, 60% e�.

I Surface location, but shallow-underground performance
due to massive layered shielding

I 325 t baryte concrete, 43 t cast iron above detector

→ 10 m water-equivalent
I active muon veto
I layered inner shielding with neutron absorber

I Currently reached 4.25 counts/kg/min (integrated,
40 - 2700 keV)

I Still room for improvement
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DLB Schematic Drawing



DLB, Detector and Muon Veto



Challenges

I Scale up isotope mass
→ produce detectors enriched to 90% 116
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CdZnTe Detector Types

I Energy resolution and identi�cation of BG-Events
depends on choice of detector type.

I Two options for CdZnTe:

I Coplanar Grid detectors
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CdZnTe Crystal with Coplanar Grid

I CPG: Two comb-shaped, di�erently biased anode grids
create virtual "small pixel e�ect".

I Advantages: Simple, low background compatible.

I Disadvantages: Less detailed information about events.

I Currently used for the LNGS Setup, energy-only output
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CPG Pulse shape analysis

M
ea

su
re

d
S

im
ul

at
e

d

Single-Site Event Multi-Site Event

M
cG

ra
th

 e
t a

l.,
 a

cc
. 

b
y 

N
IM

A
, 

20
0

9

I Pulse shape analysis will enable us to reject certain
background types

I Planned for LNGS upgrade in summer 2010.
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CdZnTe Pixel detectors

0νββ

1 - 1.5 mm

α

∽15 µm

I Better energy resolution than CPG

I Very detailed information about events → TPC-like

I Massive background reduction due to particle identi�cation:
Potentially 3 orders of magnitude for α and γ

I But: Low-Background compatibility of frontend electronics
still unknown

I Currently testing two systems at LNGS and Modane
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Pixel Pitch

I Tracking and energy resolution depends on pixel size

I Small pixels: Detailed tracking but reduced energy resolution

I Big pixels: Excellent energy resolution but reduced tracking

I Simulation of charge deposition and transport necessary
to determine optimum pixel size → ongoing
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Pixel Detector Frontend Electronics

I Frontend ASIC development very expensive
→ currently evaluating three existing systems:

I Medipix/Timepix (currently at Modane)
I Small (55 micron) pixels
I Not low-background optimized yet

I Polaris System, Univ. Michigan (currently at LNGS)
I Large (2000 micron) pixels
I Not low-background optimized yet

I CZT Pixel, Univ. St. Louis
I Di�erent pixel sizes available
I First test with LB-optimized system

in Winter 2009 at LNGS.
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Particle Identi�cation

I Particle tracks in a 55 micron timepix detector

I Easy particle identi�cation



Particle Identi�cation

I Separation of events by type



Muon Track across whole detector



Enhanced shielding

I Currently starting monte-carlo campaign to identify
best shielding strategy.

I Possible candidate:

I Interesting shielding option:
Suspend detectors directly in liquid scintillator
→ preparing for tests at Uni Hamburg
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Long-Term COBRA Roadmap

I Summer 2010: LNGS Test setup upgrade

I End of 2012: COBRA Technical Design Report

I (Hopefully) 2013: Funding and location decision

I COBRA perspective for Modane:
After LSM extension in 2013, install full-size shielding
with �rst prototype detector modules
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Possible Large Scale COBRA Setup

I Size: About 2m x 2m x 2 m (detectors and shielding only)



Conclusion

I COBRA: A new innovative approach for the 0νββ-decay
search, especially in 116

Cd.

I Despite small mass already some interesting results.

I Major upgrade of current setup in 2010.

I Compact sized full-scale setup.

I Would be well suited for installation at Modane.
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