Probing neutrino mass with SuperNEMO

Ruben Saakyan LSM Extension Workshop 16 October 2009

Outline

- The Concept
- The Detector
- Physics reach
- Status of design study
- Demonstrator
- SuperNEMO in new LSM
- Schedule

Neutrinoless double beta decay ($0\nu\beta\beta$)

$$\left[T_{1/2}^{0\nu}\left(0^{+} \otimes 0^{+}\right)\right]^{-1} = G^{0\nu}\left(E_{0}, Z\right) \left|M^{0\nu}\right|^{2} \eta^{2} - \text{Lepton number violation parameter}$$

 η can be due to $\langle m_{\nu} \rangle$, V+A, Majoron, SUSY, H^{--} or a combination of them!

Need detectors which can probe different mechanisms (and different isotopes)

SuperNEMO experimental technique

$$T_{1/2}^{0\nu}(y) > \frac{\ln 2 \cdot N}{k_{C.L.}} = \frac{\epsilon}{A} \sqrt{\frac{M \cdot t}{N_{Bkg} \cdot \Delta E}}$$

<u>Calorimetry + Tracking</u>

- Build on NEMO3 experience
- Reconstruct two electrons in the final state ($E_1 + E_2 = Q_{\beta\beta}$)
- Measure several final state observables
 - Individual electron energies
 - Electron trajectories and vertices
 - time of flight
 - Angular distribution between electrons
- Background rejection through particle ID: e^- , e^+ , α , γ
- Sources separated from detector \Rightarrow can measure different isotopes

➡ Focus on lowering N_{bkg} and

open-minded search for any lepton violating process

M: mass (g) ε : efficiency $K_{C.L.}$: Confidence level N: Avogadro number t: time (y) N_{Bckg} : Background events (keV⁻¹.g⁻¹.y⁻¹) ΔE: energy resolution (keV)

From NEMO-3 to SuperNEMO

INEIVIU-J

SuperNEMO

¹⁰⁰ Mo	isotope	⁸² Se or other 100+ kg		
7 kg	isotope mass M			
18 %	efficiency ε	~ 30 %		
²⁰⁸ Tl: < 20 μBq/kg ²¹⁴ Bi: < 300 μBq/kg	internal contaminations ²⁰⁸ Tl and ²¹⁴ Bi in the ββ foil	208 Tl $\leq 2 \mu$ Bq/kg <i>if</i> 82 Se: 214 Bi $\leq 10 \mu$ Bq/k§		
8% @ 3MeV	energy resolution (FWHM)	4% @ 3 MeV		
$T_{1/2}(\beta\beta0\nu) > 2 \times 10^{24}$ $< m_{\nu} > < 0.3 - 0.9 \text{ eV}$	y	$T_{1/2}(\beta\beta0\nu) > 1 \ge 10^{26} y$ $< m_{\nu} > < 0.04 - 0.11 eV$		

SuperNEMO (~100 people)

<u>Planar</u> and <u>modular</u> design:

~ 100 kg of enriched isotopes (20 modules x 5 kg)

<u>1 module (baseline):</u>

Source (40 mg/cm²) 4 x 2.6 m² ⁸²Se first but almost any isotope possible (⁸²Se: High $Q_{\beta\beta}$, long $T_{1/2}(2\nu)$, proven enrichment technology)

Tracking : drift chamber ~2000 cells in Geiger mode

Calorimeter: scintillators + PMTs ~ 600 PMTs + scint. blocks

Modules surrounded by water passive shielding

2 m (assembled, 0.5m between source and calorimeter)

Two designs under study

Calorimeter Blocks ("Baseline") ➡ ~12,000 8" PMTs ➡ ~ 40,000 Drift cells

Pros: Proven technology (NEMO-3) ΔE/E = 4% at 3 MeV demonstrated

Cons: Radiopurity (large PMT mass) Cost

→ ~6,000 3" PMTs
→ ~ 80,000 Drift cells

Pros:

Better radiopurity + self-shielding Cost (significantly cheaper)

Cons:

Possible issues with ageing $\Delta E/E$ and σ_{τ} is worse (but still 5.5% and 240ps at 3 MeV)

Design Study (2006 - 2009)

Physics Reach

- Full chain of GEANT4-based detector modelling, GRID interface
- Signal and background simulations, detector response
- Deliverables: Physics sensitivity dependence on detector parameters

Low background studies and source production

- BiPo detector for source contaminations measurements
- HPGe screening and Rn studies
- Source production technology
- Deliverables: < 10 µBq/kg sensitivity for U and Th with BiPo</p>

Calorimeter and Calibration

- Energy and time resolution
- Calibration system design
- ➡ Deliverables: 7-8% FWHM /√E(MeV), 1% calibration precision.

Tracker

- ➡ 1,9 and 90-cell prototypes for basic cell design
- Wiring process automation
- Deliverables: Tracker module and wiring robot design

Physics Studies

Full chain of GEANT-4 based software + detector effects + NEMO3 experience

5 yr with 100kg of ⁸²Se, $T_{1/2} > 10^{26}$ yr, $< m_v > < 50-100$ meV at 90%CL with target detector parameters

Source production (⁸²Se)

Enriched Selenium

3.5 kg through ILIAS European Program (Tomsk facility)

1 kg in NEMO3 detector

Purification

Chemical purification of 1 kg natural Se at INL (US)

Foil Production

Sample	Measure-	⁴⁰ K	⁶⁰ Co	¹³⁷ Cs	²²⁶ Ra	²²⁸ Ra	²²⁸ Th	Ru
	(h)	(mBq/kg)	(mBq/kg)	(mBq/kg)	(mBq/ kg)	(mBq/kg)	(mBq/kg)	(mBq/kg)
Natural Se	447.33	668 ± 31	< 1	2.1 ± 0.9	46 ± 2	13 ± 2	11 ± 2	485
Purified Natural Se	436.56	< 20	< 0.7	1.0 ± 0.4	< 0.9	< 2.4	< 1.6	3
Reduct	ion Factor	> 33			> 51	> 5.4	> 6.9	162

NEMO-3 composite foil method (Russia)

New coating test at LAL (France), discussion with INL

Mass Production

100 kg by centrifugation in Russia feasible

within the timescale required

Source radiopurity: BiPo detector

Detector dedicated to ultra-low leve radioactivity measurement in SuperNEMO source foils: ²⁰⁸TI < 2 µBq/kg, ²¹⁴Bi < 10 µBq/kg

BiPo. The Idea

BiPo detectors

BiPo-1 prototype running in LSM 20 modules (20cm x 20cm scintillators and pmts)

<u>Goal</u>: Detector background level measurement (scintillator surface radiopurity)

<u>Results</u>: < 10 µBq/kg possible

Next step: **BiPo-3** detector, 3.3 m^{2,} to measure source radiopurity for 1st module (**Demonstrator**). Construction in 2010, start running in 2011 possibly in Canfranc

HPGe and Radon detectors

All material have to undergo radiopurity control. Challenging levels!

2x400 cm³ HPGe ultra-LB detectors in LSM Assuming 1kg x 1 month: 60 µBq/kg for ²⁰⁸TI 200 µBq/kg for ²¹⁴Bi

A new HPGe 600 cm³ being developed, better efficiency, lower background More detectors available in several labs for pre-screening

Radon emanation studies Work in progress to develop detector with sensitivity 0.1 mBq/m³

16-Oct-2009

`SuperNEMO. R. Saakyan, UCL

Calorimeter R&D

Large R&D effort to improve energy and time resolution

Scintillator

- Material
- Shape
- Size
- Coating

PMT

- QE
- Uniformity
- Collection efficiency
- Radiopurity

Calorimeter. Remaining R&D

Scintillator

➡ Final shape details for a feasible mechanical design

PMT blocks

- \blacksquare Better $\Delta E/E$ with Photonis than Hamamatsu
 - ➡ FWHM (1 MeV) 6.7% vs 7.5%

but Photonis has gone out of business

- Work with Hamamatsu on improvements. Input from our joint R&D with Photonis
- ➡ Radiopurity. (Goal: ⁴⁰K < 0.1 Bq/kg, ²¹⁴Bi < 0.04 Bq/kg, ²⁰⁸TI < 0.003 Bq/kg)</p>
 - Synthetic silica instead of traditional glass under study

PMT bars

Improve timing by changing faceplate from flat to plano-concave type

Finally, bars vs block decision

Tracker R&D

- Basic cell design developed and verified with 90-cell prototype
- Mechanical model of automated wiring robot
- Cosmic muon data collected. Required performance demonstrated
 - 0.7mm transverse, I cm longitudinal resolution
 - Cells efficiency >98%

Next step: To build 1st SuperNEMO module - Demonstrator Goals

Demonstrate feasibility of large scale mass production
To measure backgrounds especially from radon emanation
Only possible with a realistic super-module
To finalise detector design
To produce a competitive physics measurement

0.3 expected bkg events in 2.8 - 3.2 MeV with 7kg of ⁸²Se in 2 yr

Sensitivity by 2015: 6.5 · 10²⁴ yr (90% CL)

it is equivalent to $3 \cdot 10^{25}$ yr for ⁷⁶Ge (GERDA-Phasel)

or ~4 expected "golden events" if Klapdor is right

Demonstrator Design

Demonstrator in LSM

Originally expected to be hosted in "old" LSM (instead of NEMO-3) but, if LSM-extension ready in 2013, may go straight in the new lab.

Full SuperNEMO Detector in LSM (extension)

Bars

Letter of Intent submitted on 25 September 2009

Blocks

Full SuperNEMO Detector in LSM (extension)

Full SuperNEMO Detector in LSM (extension)

Moving a module

SuperNEMO Schedule overview

Concluding Remarks

- SuperNEMO is capable of probing new physics at 50-100 meV neutrino mass scale
- Solution As any other DBD experiment it is **high risk-high return**
- SuperNEMO approach is **unique**
 - Event topology fully reconstructed
 - Isotope flexibility
- LSM is a prime location for SuperNEMO

LABORATOIRE DE L'ACCÉLÉRATEUR LINÉAIRE

IN2P3-CNRS et Université PARIS-SUD Centre Scientifique d'Orsay - Bât 200 - B.P. 34 91898 ORSAY Cedex (France)

R&D Calorimeter Calibration

Over more than 5 yr of data taking the gain of 12,000 PMTs must be controlled at 1% level. Detector response must be linear, any non-linear effect controlled at 1% level UV-LED based light injection system being developed

Linearity of Hamamatsu 8" PMT

