Stanislav (Stas) Babak.
AstroParticule et Cosmologie, CNRS (Paris)

LISA Data Analysis

"Wanderer, your footsteps are the road, and nothing more; wanderer,
there is no road, the road is made by walking. By walking one makes the
road, and upon glancing behind one sees the path that never will be trod
again. Wanderer, there is no road — Only wakes upon the sea." [Antonio
Machado]
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& Gravitational Wave sources in the LISA’s band

& Gravitational Wave data analysis

¢ LISA mock data challenge




GW sources in LISA band

O GW signals in LISA are strong and long-lived.

O LISA data will contain thousands of GW signals simultaneously: need to
separate and characterize them

O Non-stationary noise
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[.ISA sources

O We believe that all galactic nuclei host Massive Black Holes: Milky Way has 4
mln. solar mass BH

O Galaxies merge: we can form Massive Black Hole Binary (MBHB) system

O We need stars and gas to bring MBHSs close together for GW to be efficient
(binary is merging within Hubble time)

[Credits: Hassinger+, VLA, Chandra, NASA] [Image: Hubble telescope] }‘ >



[.ISA sources: MBHB

MBHs are formed from the initial BH seed. Those seeds could be “light”
remnant of the first generation of stars or “heavy” from the direct collapse of a
giant gas cloud. BHs accumulated the mas through gas accretion and merging
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LISA: GW signal from MBHB

The signal from MBHB is similar to what we have observed in LIGO (scaled
up in the amplitude and streched in time). GW signal from MBHB is expected
to be the strongest signal (seen by eye in the simulated data). Imposes
stringent demands on the accuracy of GW signal modelling
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LISA: GW signal from MBHB

10~
— &2 e Signal is superposition of harmonics:
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EMRIs (extreme mass ratio inspirals)

O Massive BHs in galactic nuclei surrounded by stars and gas with
quite high density

O MBH could capture a compact object (BH, NS, WD) which is thrown
on a very eccentric orbit (due to N-body interaction). The orbit
shrinks and circularizes due to grav. radiation.

O EMRI: binary system with extreme mass ratio of component 10-7 -
10-5

O Compact object revolves 10¢ orbits in the proximity of MBH before
the plunge.




EMRI

365 days before merger, axis units AU, current average speed 0.164 ¢

[Credits: S Draco, CalTech]




EMRI

O Orbital motion: (almost) elliptical with a strong relativistic precession +
orbital precession due to spin-orbital coupling

O Signal is very rich in structure (hard to detect but gives a lot of information)

O Ultra-precise parameter determination (if detected). Can map spacetime of
a heavy object: holiodesy
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Galactic white dwart binaries

O We expect to have 107 WD binaries all emitting GWs in the LISA band, only 104
can be resolved individually, other form stochastic GW signal (foreground)

O GW signal is almost monochromatic

O Verification binaries: known from current e/ m observations (+GAIA,+ LSST)
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Expected event rate in LISA

O MBHB : high uncertainties in the event rate - from few to few
hundreds per year

O EMRIs: even more uncertain - from few to few thousands of
detectable GW signals per year.

O GW signal from solar mass BBH (LIGO/VIRGO sources). We expect
to observe about 10 sources: GW signal first observed in LISA and
then 5-10 years later with the ground based detectors.

O Possible detection of the stochastic GW signal from energetic
processes in the early Universe.

12



[.ISA data

LISA data analysis is quite a complex task. We organize the LISA data
challenge: https:/ /lisa-ldc.lal.in2p3.fr/home . We simulate LISA data (noise
and GW signals) and anyone can download the data and analyse it.
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https://lisa-ldc.lal.in2p3.fr/home

Data analsys: Matched filtering

GW15091 | Raw data
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GW signal from merging BHs (we search for)
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Matched filtering: is used when we are searching for a signal of known form in the noisy data.
The basis: we correlate the data with expected signal and search for a maximum of correlation.

- wavform /template we search for.

o AP = J(f )iL* U df Correlation in frequency domain,
. 0 S weighted by detector sensitivity

S—

noise power spectral density

14




SNR

Matched filtering
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SNR

Matched filtering
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Matched filtering

Hanford GW151226
: 0.6 | | | | |
o 0.3
—
— 0.0 e
= T WV ST O e T 8 Y
'@—0.3 |
n—0.6

SNR

11 | b e d




Matched filtering and parameter estmation

~ template residuals

Noise = data - template
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Matched filtering and parameter estimation

Noise = data - template
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whitened strain (units of noise stdev)

whitened strain (units of noise stdev)

Matched filtering for GW 150914

H1 L1

s H1 whitened data around event 5 L1 whitened data around event

— H1 whitened h(t) § H
— Template(t) :

— L1 whitened h(t)
— Template(t)

whitened strain (units of noise stdev)

=]

|
-10
-0.15 —0.10 —0.05 0.00 0.05 —0.15 -0.10 -0.05 0.00 0.05
g . Time since 1126259462.4395 Time since 1126259462.4324
=z H1 ReSIdu§| whitened data after = tracting template ar?und event L1 Residual whitened data after subtracting template around event
. T T T

whitened strain (units of noise stdev)

| . . '
=0:15 -0.10 =005 0.00 0.05 -10 L ' '

Time since 1126259462.4395 —0.15 —0.10 —0.05 0.00 0.05
Time since 1126259462.4324

[LOSC: https:/ /losc.ligo.org/ tutorials/ ]
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likelihood

Let us assume that the data contains the signal.: hypothesis (model) H;

d(t) =n(t) +s(t,0;)  signal “s” depends on parameters ;

data = noise + signal

If the template matches the GW signal exactly h(t,0;) = s(¢,0;) —> d(t) — h(t,0;) = n(t)

—

p(d(t)u{lv §(t, >‘)) = p(d(t) 7 S(tv A)) — Pn

O Assume that the noise is Gaussian (but not necessarily white): non white noise has different
variance at different frequencies. The the likelihood can be written as

Likelihood: Dld|HE 8, x e 2\ e i )

b
The inner product: matched filtering (alb) = 4% /

O We search for parameters which maximize the likelihood: making the residuals most

A

noise-like — maximum likelihood estimators for parameters 6,

2



likelihood

O For a given noise realization the maximum likelihood estimators. § = 6;,.,,

How close the estimated parameters to the true depends on the noise realization and on
the strength of the signal: stronger the signal (high signal-to-noise ratio, SNR) closer
estimators to the true values — less influence of the noise. Unbiased estimator: equal to
true if averaged over the noise realizations. < 6 >= ;..

OIf s # h(0irue) — lack of accuracy in the signal modelling: systematic bias in parameter
estimation.
ming, (s — h(6;)|s — h(8;)) — 6, i = 0:| — 00, bias

If there is a bias, we still can detect the GW signal on expense of making error in parameters
charactrizing the system (binary): effectualness

Eoihi (S|h(9true) O ] (§|il) iLZ h
B 0, o L ’ | (h]h)
normalized

Overlap varies [-1, 1]: 1 is a pefect match, related to the loss in SNR
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likelihood maximization

O We want to cover the parameter space (N-dim) by grid
of points at equal distance from each other.

O Grid: not too coarse, not too fine

O The distance is determined not by a coordinate
distance but by “proper” distance — correlation

0, between nearby templates: introduce interval and
: > metric

ds® = |h(0; + 660;) — h(6;)| = (h(0; + 860;) — h(0;)|R(0; + 60;) — h(6;)) ~ 5600,

Consider 2-D parameter space and fix ds = 0.01 : :
metric on the parameter maniold

102
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A

is a function of a central pont 5
~ 101
direction of weak correlation §
template’ volume (chirp mass)
= _
(91 10°

23 10° 10 102
Maca 1 [AS -]



Bayesian approach

O Expensive computationally: often used when the signal is detected using the grid-based
method (or something else) : Hi is true. Allows to test several models (different signal’
models, non-GR theories).

O We have to assign the prior probability to our models and parameters of each model. We
treat parameters describing a signal as random variables and trying to estimate probability
distribution function(s) for each parameter based on the observed data (posterzor)

O Consider several models M; each parametrized by set of parameters (9?;

d M;
Bayes’ theorem P(M;|d) = Ad p(c)i) )
For a given model M;
likelihood prior
(PG d)—(P 46:, M) )(=(6,))
s p(d|M;)
posterior ¥

Evidence of model M;

24



Bayesian approach

p(d|M;) = /dé; p(d]H_;;, Mz)ﬂ(e_;) — Evidence of model M;:

important for the model selection

P(M;|d) = [/ do; p(d|o;, Mz)w(é;)] — probability of the model M; given a data

O 0Odd ratio:The problem to evaluate the normalization P(d) - requires full set of models
which are mutually exclusive. We can evaluate the ratio of probabilities:

& N 2
o _ POald) _[p(din)|[n(3)
" p(Meld) | p(d|Mp) || m(Ms)
. N V,
Bayes factor prior odds

25 “



Markov Chain Monte Carlo (MCMC)

O So for a given model M; we need to evaluate postrior pdf for all parameters and the
evidence: posterior pdf tells us about parameters of the GW signal (system) and evidence
tells us how good this models fits the observations.

p(d|0;, M;) 7 (6;)
p(d|M;)

p(0:|M;, d) = — posterior pdf

p(d|Mz') = /dé; p(d|9_;-, Mz)ﬂ(é;) — evidence of model M;

O Markov Chain Monte Carlo (MCMC) approach:
We construct Markov chain: stochastic process where the next point in the chain depends only
on the previous one. And:
O we want chain to move towards the region of parameter space with high likelihood
O we need to introduce the transitional probability: way to move from one point to another
O we want a transitional probability to satisfy the ballance equation

ballance eqn.: P(g(k))P(gk+1|67}k)) — P(g(k+1))P(§k|§(k+1))
-

distribution we want to sample transitional probability
(posterior) 26




MCMC

O Consider a particular implementation: Metropolis-Hastings
O particular way of building transitional probability which satisfies the ballance equation
O we start with introducing a proposal distribution (arbitrary™) q(@? k1) |§( k)
O then we build the chain by introducing the acceptance probability

> =N =
—’ o : p(d|6 q(0)|0 (0
(s fiay) = mind 1|2 ’(C;‘kgf ”; EJM (‘k@f 1); EJ(H)D) :
¢ @ e Ol B )
likelihood ratio ratio of priors

It is easier to understand if we use symmetric proposal and uniform priors: likelihood ratio

(X — probability of accepting new point 5( k+1)

The chain moves predominantly in the direction of high likelihood.

27
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2

2 <1 0 1

MCMC

200

500

------------------------------------------------------------------------------------

iteration t

O The theorem tells us that the chains will sample
the posterior pdf (after some burn-in length)
independent of the proposal distribution, BUT

O The efficiency of the sampling strongly
depends on the proposal (proposal should
resemble the posterior)

O Number of samples vs. number of independent
samples (defined by autocorrelation length)

o A‘.T'. .. L

0 100 200 300

O Multimodal posterior require special treatment!

(simulated annealing, parallel tempering) {
A\~
28 o ‘ >




W data analysis

— Data
— Predicted

Distance: 800 MPc
Total mass: 200 M,

" """P‘ r\'

0.35
Time (s)
Data & Best-fit Waveform: LIGO Open Science Center (losc.ligo.org); Prediction & Animation: C.North/M.Hannam (Cardiff University)
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Whitened H1 Strain / 10~2!

itened L1 Strain / 10~2!

(W data analysis

Fit to the data not a single line but multiple

(for each parameter set in the posterioir)
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[GW150914, LSC+VIRGO PRL (2016)]
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“LISA data challenges™

On going project within LISA consortium:

e Produce and publish simulated LISA data aiming at solving particular data analyis
problem(s)

e Infrastructure which fixes conventions, LISA configuration, prototype for end-to-end LISA
simulator and for data analysis pipeline

e The first data challenge “Radler” is over https:/ /lisa-ldc.lal.in2p3.fr/ldc but you can still
download data, analyze and submit results (recommended before moveing to the second

challenge)

e Participants of “Radler challenge”: Birmingham University, Marshall (NASA), Montana
Uni, Barcelona (ICE, CSIC, IEEC), CEA /IRFU (France), Goddard (NASA), APC (France),
University of Trieste, IISER (India), University of Minnesota, Imperial College London.

e Methods:

e Various types of MCMC (MH, parallel tempering, reversible jump, slice, DE) with custom-
made proposals, nested sampling (dynesty)

e Penalizing for extra parameters (overfitting)

e Non-parametric method, F-statistic

e “Speed-up”: heterodyning, GPU, “fast response”

lisa

il


https://lisa-ldc.lal.in2p3.fr/ldc
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Analyzing verification Galactic binaries

e True parameters are within 90%
credible region.

e Different priors are used

¢ Different noise realization v1, v2

e Different samplers

[Busciccio+ PRD, 2019]
[Littenberg+ PRD, 2020]




Search for MBHBs

masses

my = 1242513 44* S0

N R e GW signal includes inspiral merger
-5 / | spins and ringdown (no precession, only
S| LA BB e dominant mode)
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Search for MBHBs

my = 2599629.99* F02

masses

-

2

Recover well “intrinsic parameters”:
o = 075 masses and spins of BHs
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my = 2509629.99%%
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Search for

my = 2500620.99* 3512

see talk by S. Marsat
masses
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Understanding sky bi-modality

Sky 90% credible region in the solar Sky uncertainty in the LISA frame:
system barycenter frame. symmetric w.r.t LISA’s plane
Amplitude ratio of two peaks ~ odd ratio The detectable part of signal: ~10 hours
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Understanding sky bi-modality

Doppler & amplitude
modulation due to
LISA’s orbital motion

Direct and antipodal
sky position (SSB frame)

Characteristic Strain
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Galaxy (white dwarf binaries)

e The data contained 30 mln signals

e 10-20 thousands individually resolvable [Littenberg+ PRD, 2020]

()

* Results are submitted in small frequency bands

e Problem: to understand the number of sources
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Identfying number of sources

® Take a narrow band next to 10mHz: 3 GW signals
e Perform time-data adaptive (4 months, 5 months, ... 10 months) search
e Consider 4 models: 1 GW source, 2 GW sources, 3 GW source, 4 GW sources

4 months 5 months 6 months 7 months 8 months 9 months 10 months

N-sources in the data
using different data
duration

0 1 2 3 4 o1 2 3 4 01 2 3 4 01 2 34 01 2 3 4 012345
1111111, SOUrces
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Time-evolving catalogue building

12 mo 24 mo

—— [Littenberg+ PRD, 2020]
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Stochastic GW signal

Raphael Flauger, Nikolaos Karnesis, Germano Nardini, Mauro Pieroni, Angelo Ricciardone, Jesus Torrado,
Ch. Caprini, Sharan Banagiri, Alexander Criswell, Vuk Mandic

split freq. in bins and evaluate SGW piecewise (powerlaw). Penalize for unnecessary large
number of bins (AIC)

Power law reconstruction 10 bins

Power law reconstruction 3 bins (after merging)

» Data (used by the binner) Data (used by the binner)
1075 e LISA Sensitivity . LISA Sensitivity
—— LISA PLS 3yrs SNR = 10 10 —— LISAPLS 3yrs SNR = 10
~— -~ Input signal Input signal
7 ——— Reconstructed sensitivity 8 Reconstructed sensitivity
10 Reconstructed signal 10~ Reconstructed signal
Bin extremes Bin extremes
Regions for noise prior 5 1o region
‘_‘:0 102 ~NOo 10~ 20 region
= 'Cg Regions for noise prior
O
O
G C 10—10
10 -11
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Stochastic GW signal

Reconstruction of Anysotropy

I mn 4 out

e —
— e ——
0 | [x10- ] 6.9 0.2 | [x10=%] 6.9

Smoothing on small scales (complete loss of sensitivity at [~ 15)
[Contaldi+ (2006)]
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Stellar mass BH binaries
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Stellar mass BH binaries

e Weak source at high frequency end of LISA’ s sensitivity: possible multi-band sources
e Hard to detect. Could serve as laboratories for testing GR
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https://inspirehep.net/literature?q=a%20S.Datta.9

LISA data challenge-2 (“Sangria™)

Sangria (English: /seen'griza/, Portuguese pronunciation: [S€'gri.e]; Spanish: sangria [san'gri.a)) is
an alcoholic beverage of Spanish origin. A punch, the sangria traditionally consists of red wine and

chopped fruit, often with other ingredients such as orange juice or brandy. ,,
&)

¥ o
.\ oy .
| £
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e Mild “enchilada” data challenge:
mixture of sources + unknow level of instrumental noise
e Galactic WD binaries (again 30 mln) plus unknown number of MBHBs:
e Training data challenge + Blind challenge
e Noise is not stationary (cyclo-stationary) due to stochastic foreground confusion noise
e The data is available https:/ /lisa-ldc.lal.in2p3.fr/Idc
e Officially released

—

lisa
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https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Help:IPA/Portuguese
https://en.wikipedia.org/wiki/Spanish_language
https://en.wikipedia.org/wiki/Help:IPA/Spanish
https://en.wikipedia.org/wiki/Alcoholic_beverage
https://en.wikipedia.org/wiki/Spanish_cuisine
https://en.wikipedia.org/wiki/Punch_(drink)
https://en.wikipedia.org/wiki/Red_wine
https://en.wikipedia.org/wiki/Orange_juice
https://en.wikipedia.org/wiki/Brandy
https://lisa-ldc.lal.in2p3.fr/ldc
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X-TDI strain
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“Sangria” in time domain
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“Sangria” in time domain

x10~1 ‘
— Instr. noise
—— Verification binaries
1 — Full Galaxy -
9 |
-9 |
—4
0 o0 100 150 200 250 300 350

Time [days]

lisa 50




“Sangria” in time domain
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“Sangria” in time domain
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“Sangria” in frequency domain
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“Sangria” in frequency domain
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“Sangria” in frequency domain

— Full Galaxy
0% — Verification binaries
— NIBHBs
— Instr noise
10—37 .
N
-
iy
=
e ]
e 107 | . -
10—41 .
|
| Al | | “ﬂ_

1072 10 1073 1072 107!
Frequency [Hz|

56




“Sangria” in frequency domain
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“Sangria” in time-frequency
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“Sangria” in time-frequency
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LISA data challenge-2b (“Spritz”)

- Spritz (alcoholic beverage), an aperitif consisting of wine, sparkling water, and liqueur
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e Two data sets:
e MBHB: 3 month of data
e Verification binaries, 1 year long w
e Both data sets will contain
e scheduled gaps
e olitches from LISAPathfinder
* 2nd order Keplerian LISA orbit

e Non-stationary noise: Galactic foreground
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https://en.wikipedia.org/wiki/Spritz_(alcoholic_beverage)

LISA data challenge-1b ("Yorsh™)

Yorsh (Also known as Mora Grogg) (Russian: Epw which means "Ruffe") is a Russian mixed drink consisting of beer
thoroughly mixed with an ample quantity of vodka. It is traditionally drunk in a social setting, typically with a toast
followed by downing a full glass of it at one go.

e Two types of GW sources (left over from challengelb):
e SBBH
e 1 source with SNR ~ 25, 2 years
e 1 source with SNR ~ 10, 2 years
e EMRI
e 1 source, SNR ~40, generic orbit, simple model (AAK)
* 1 source, SNR ~40, non-spining MBH, fully relativistic
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https://en.wikipedia.org/wiki/Russian_language
https://en.wikipedia.org/wiki/Ruffe
https://en.wikipedia.org/wiki/Russia
https://en.wikipedia.org/wiki/Mixed_drink
https://en.wikipedia.org/wiki/Beer
https://en.wikipedia.org/wiki/Vodka
https://en.wikipedia.org/wiki/Toast_(honor)

Conclusion

e LISA is not LIGO in space
e But... We can learn a lot from LVC and use methods/techniques in LISA data analysis.
e Many challenges caused by

e multimodality of likelihood,

e systematics in GW models,

* Jarge number of overlapped signals

e non-stationarity of the noise (gaps, glitches, ....)

e complex response,

e strong/long duration of signals

e “Sangria” data set is served: download it and see what you we can extract.
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