

Cours LISA : Modèle de Performance

J. Martino

Cours LISA 2021

Plan

I/ Objectifs et structure du modèle de performance

II/ Rappels sur la mesure

III/ Quelques bruits en détails

IV/ Limitations

The Consortium LISA Performance Model

GOAL

Link between science specifications in the Science Requirement Document and the instruments noises and parameters values.

- Bottom Up : Current Best Estimate [CBE] -> Capture the physics and our best understanding of the instrument.
- Top Down approach: **Allocation** -> Capture our level of confidence.

The Consortium LISA Performance Model

- Frequency domain model of the LISA constellation as Amplitude Spectrum Density
- Hierarchical model : from strain sensitivity to sub-system noises & parameters

Objectif du modèle de performance

October 2020 Release 1.4 beta - New models/No allocation

- Stray light main contributors in all IFO's
- SC & MOSA angular jitters coupling to the TM force noise due to SC gravitational imbalance

November 2020 Data Format & Model sent to primes for interfacing with the performance model

December 2020 New « TDI » Performance Model Release (2.0)

- New TDI 2.0 top level representation
- OMS noises & Test Mass acceleration in TDI variables
- · New long arm Tilt-To-Lenght coupling with calibration & drift
- New Laser residuals & Clock residuals and calibration analytical models

January 2020 Update Release 2.0 with « Consortium » allocation tree

Produce « primes » version(s) of the Performance Model

Spring 2021

New performance Model Release (2.1)

TDI consolidation

• DWS & Phasemeter

• TDI XY

• ... [TBD]

Structure

Structure: Test Mass IFO Electronic Noise

MODEL PRODUCTS **INPUTS** Noises' : TMI equivalent input current noise density of the electronics description : Equivalent input current noise density of the type : Source Noise varname : s_I_seg_el_tmi **Derived Noise** Parameters' : lambda = 1.064e-06 [[m]] Test Mass IFO Chain Noise - CBE vs Allocation 10-9 description : Laser wavelength Test Mass IFO Chain Noise (Allocation) $\tilde{s}_{\text{TMI, Chain}} = \frac{\lambda}{2\pi} \frac{\tilde{s}_{I_{\text{seg,el}}} \sqrt{N_{\text{Seg, Loc}} \cdot N_{\text{PD, Loc}}}}{R_{\text{PD}} \epsilon_{\text{Carr}} \sqrt{2\eta_{\text{het, Loc}} P_{\text{LO, TM}} P_{\text{TX, TM}}}}$ documentation : Test Mass IFO Chain Noise (CBE) 10-10 $N_pd_TM = 4.0$ [[]] description : Number of photorecievers for the TM IFO documentation : 10-11 -0.5] • N_seg_TM = 4.0 [[]] description : Number of segments per photoreceiver in the TM in 10-12 È documentation : Ε eta car = 0.81 [[]] 10-13 description : RX power in main carrier signal documentation : 10-14 [[A W^(-1)]] $R_pd = 0.69$ description : Responsivity of InGaAs 10-15 documentation : 10-5 10^{-4} 10^{-3} 10-2 10^{-1} frequency [Hz] HE_loc = 0.82 [[]] description : Heterodyne Efficiency in a Local IFO documentation : • **P** LO TM = 5e-06 [[W]] description : Local Oscillator power at the photo-receiver in documentation : [Optical Power budget, LISA-UKOB-INST-RP-001] • P TX TM = 0.001 [[W]]

description : TX-beam fraction impinging at the photo-receiver documentation : [Optical Power budget, LISA-UKOB-INST-RP-001]

Structure: Long Arm Waveplates Thermoelastic

Parameters - CSV files

LISA_PerfModel_Parameters

name	description	unit	documentation	allocation	nominal	cold	hot
lambda	Laser wavelength	[m]		1.064E-06	1.064E-06	1.064E-06	
L_arm	Arm Length	[m]		250000000	250000000	250000000	
D_tel	Telescope Diameter (clear aperture)	[m]		0.30000000000000000	0.30000000000000000	0.30000000000000000	0
P_L	Laser Power from MOPA	[W]		2	2	2	
R12	Vector from TM1 to Tm2	[m]		0.420000000000000000	0.420000000000000000	0.420000000000000000	0
L_MSS	Effective length of MSS	[m]	[LISA-ADSF-INS	0.300000000000000000	0.300000000000000000	0.30000000000000000	0
R_pd	Responsivity of InGaAs	[A W^(-1)]		0.69000000000000000	0.690000000000000000	0.69000000000000000	0
D_pd	QPD Diameter	[m]		0.001	0.001	0.001	
TMsize	TestMass size	[m]		0.0460000000000000000	0.0460000000000000000	0.0460000000000000000	0.0
TMmass	TestMass mass	[kg]		1.93000000000000000	1.93000000000000000	1.93000000000000000	
VacuumPressure	Vacuum Enclosure Pressure	[Pa]		1E-06	1E-06	1E-06	
T_GRS	GRS Temperature	[K]		293	293	293	
alphanoise	Noise amplification factor	0		13	13	13	
DCX_DX_GRS1	Cx to TM derivative with respect to x for GRS1	[F m^(-1)]		2.91385358345786E-10	2.91385358345786E-10	2.91385358345786E-10	2.9
DCXH_DX_GRS1	Cx to EH derivative with respect to x for GRS1	[F m^(-1)]		-6.96752395467991E-11	-6.96752395467991E-11	-6.96752395467991E-11	-6.9
CEL_GRS1	Total TM to electrodes capacitance for GRS1	[F]		1.53958921869247E-11	1.53958921869247E-11	1.53958921869247E-11	1.(
стот	Total TM capacitance	[F]		3.42E-11	3.42E-11	3.42E-11	
D2CTOT_DX2_GRS1	Total TM to ground capacitance second derivative with respect to x^2 for	([F m^(-2)]		1.36515242625754E-06	1.36515242625754E-06	1.36515242625754E-06	1.:
R_star	Electrodes Effective Armlength between x-face electrodes	[m]		0.0330000000000000000	0.0330000000000000000	0.0330000000000000000	0.0
eta_car	RX power in main carrier signal	0		0.81000000000000000	0.81000000000000000	0.81000000000000000	0
HE_la	Heterodyne Efficiency in the Long Arm IFO	0		0.75	0.75	0.75	
HE loc	Heterodyne Efficiency in a Local IFO	П		0.820000000000000000	0.820000000000000000	0.820000000000000000	0
eta_fibre	Optical efficiency of the OB feed fibres (insertion loss of 0.3 dB)	0		0.93300000000000000	0.93300000000000000	0.93300000000000000	0
eta_fios	Optical efficiency of the OB FIOS (loss at FIOS PBS + output polariser	0		0.95693838400000000	0.95693838400000000	0.9569383840000000	0
eta_OB_TX	Optical Efficiency of the OB TX Path	0		0.941417218	0.941417218	0.941417218	
eta_Tel_TX	Optical Efficiency of the Telscope TX Path	0		0.94715284900000000	0.94715284900000000	0.94715284900000000	0
alpha_fact	Optimum transmission factor for gaussian beam through two apertures.	0		0.40726436345010700	0.40726436345010700	0.40726436345010700	0
eta_Tel_RX	Optical Efficiency of the Telscope RX Path	0		0.8136668090000000	0.81366680900000000	0.8136668090000000	0
eta_OB_RX	Optical Efficiency of the OB RX Path up to Long Arm QPDs	۵		0.7798712020000000	0.7798712020000000	0.7798712020000000	0

Parameters - CSV files PerfModel_Parameters

D_ob	Characteristic scale of the OB for path stability	[m]		1	1
D_ob_grs	Dimension between GRS and OB	[m]		0.25	0.25
D_path	Possible path mismatch error on OB	[m]		1	1
D_comp_tol	Tolerence on the thickness of a Beam Splitter	[m]		0.0001	0.0001
D_mir	One Mirror Thickness	[m]		0.008	0.008
D_win	Thickness of the Optical Window on the GRS	[m]		0.00635	0.00635
D_wp	Thickness of a waveplate	[m]		0.001	0.001
D_paam	Offset from PAAM mount to reference mirror	[m]		0.007	0.007
C_RX	Total Rx TTL Coupling Factor	[m rad^(-1)]	0.005	0.005
C_TX	Total Tx TTL Coupling Factor	[m rad^(-1)]	0.004	0.004
C_TM	Total TM TTL Coupling Factor	[m rad^(-1)]	4E-05	4E-05
TTL_Cal	TTL Calibration Accuracy	0		1	1
los	Alignment tolernace between TM Normal and RX Direction	[rad]		7E-05	7E-05
CTE_MSS_OBTel	Coefficient of thermal expansion of the MSS averaged over the structural materi	[K^(-1)]		9E-06	9E-06
dx_sc_pp	Residual SC Translation Per Axis. Infer from LPF o1 measurement	[m]		1E-08	1E-08
dL	Expected Ranging Bias	m		1	0.1
	Average SC around			0	
L_dot	Average SC speed	m s^(-1)		8	8
L_dot kF	Anti-aliasing filter property	m s^(-1) Hz^-2	This is an approximation shape at	8 3.38.*f.^2	8 3.38.*f.^2
L_dot kF fhet	Average SC speed Anti-aliasing filter property Maximal beatnote frequency	m s^(-1) Hz^-2 Hz	This is an approximation shape at	8 3.38.*f.^2 2500000	8 3.38.*f.^2 25000000
L_dot kF fhet fmod	Average SC speed Anti-aliasing filter property Maximal beatnote frequency Modulation frequency	m s^(-1) Hz^-2 Hz Hz	This is an approximation shape at	8 3.38.*f.^2 25000000 240000000	8 3.38.*f.^2 25000000 2400000000
L_dot kF fhet fmod P_incidentTM	Average SC speed Anti-aliasing filter property Maximal beatnote frequency Modulation frequency laser power incident on the TM	m s^(-1) Hz^-2 Hz Hz W	This is an approximation shape at	8 3.38.*f.^2 25000000 2400000000 0.001	8 3.38.*f.^2 25000000 240000000 0.001
L_dot kF fhet fmod P_incidentTM T_OB	Average SC speed Anti-aliasing filter property Maximal beatnote frequency Modulation frequency laser power incident on the TM Optical Bench Temperature	m s^(-1) Hz^-2 Hz Hz W K	This is an approximation shape at	8 3.38.*f.^2 25000000 2400000000 0.001 293	8 3.38.*f.^2 25000000 2400000000 0.001 293
L_dot kF fhet fmod P_incidentTM T_OB D_hole	Average SC speed Anti-aliasing filter property Maximal beatnote frequency Modulation frequency laser power incident on the TM Optical Bench Temperature laser hole diameter on the EH +X face	m s^(-1) Hz^-2 Hz Hz W K m	This is an approximation shape at	8 3.38.*f.^2 25000000 2400000000 0.001 293 0.006	8 3.38.*f.^2 25000000 2400000000 0.001 293 0.006
L_dot kF fhet fmod P_incidentTM T_OB D_hole epsilon	Average SC speed Anti-aliasing filter property Maximal beatnote frequency Modulation frequency laser power incident on the TM Optical Bench Temperature laser hole diameter on the EH +X face TM reflectivity	m s^(-1) Hz^-2 Hz Hz W K m	This is an approximation shape at	8 3.38.*f.^2 25000000 2400000000 0.001 293 0.006 1	8 3.38.*f.^2 25000000 2400000000 0.001 293 0.006 1
L_dot kF fhet fmod P_incidentTM T_OB D_hole epsilon dg_dT_mean	Average SC speed Anti-aliasing filter property Maximal beatnote frequency Modulation frequency laser power incident on the TM Optical Bench Temperature laser hole diameter on the EH +X face TM reflectivity Electro-Housing mean temperature fluctuation coupling coefficient to differentia	m s^(-1) Hz^-2 Hz W K m m s^-2 K^-	This is an approximation shape at Measured at the end of LPF missio	8 3.38.*f.^2 25000000 2400000000 0.001 293 0.006 1 1 E-12	8 3.38.*f.^2 25000000 2400000000 0.001 293 0.006 1 1E-12
L_dot kF fhet fmod P_incidentTM T_OB D_hole epsilon dg_dT_mean dg_dDT	Average SC speed Anti-aliasing filter property Maximal beatnote frequency Modulation frequency laser power incident on the TM Optical Bench Temperature laser hole diameter on the EH +X face TM reflectivity Electro-Housing mean temperature fluctuation coupling coefficient to differentia Electro-Housing temperature gradient fluctuation coupling coefficient to different	m s^(-1) Hz^-2 Hz W K m m s^-2 K^- m s^-2 K^-	This is an approximation shape at Measured at the end of LPF missio	8 3.38.*f.^2 25000000 2400000000 0.001 293 0.006 1 1 1E-12 2E-11	8 3.38.*f.^2 25000000 2400000000 0.001 293 0.006 1 1 1E-12 2E-11
L_dot kF fhet fmod P_incidentTM T_OB D_hole epsilon dg_dT_mean dg_dDT omegasquarexx	Average SC speed Anti-aliasing filter property Maximal beatnote frequency Modulation frequency laser power incident on the TM Optical Bench Temperature laser hole diameter on the EH +X face TM reflectivity Electro-Housing mean temperature fluctuation coupling coefficient to differentia Electro-Housing temperature gradient fluctuation coupling coefficient to differentia Iest Mass x-axis stiffness	m s^(-1) Hz^-2 Hz W K m m s^-2 K^- m s^-2 K^- s^-2	This is an approximation shape at Measured at the end of LPF missio	8 3.38.*f.^2 25000000 2400000000 0.001 293 0.006 1 1 293 293 293 293 293 293 293 293 293 293	8 3.38.*f.^2 25000000 2400000000 0.001 293 0.006 1 1 5.12 2E-11 -8E-07
L_dot kF fhet fmod P_incidentTM T_OB D_hole epsilon dg_dT_mean dg_dDT omegasquareSRSxx	Average SC speed Anti-aliasing filter property Maximal beatnote frequency Modulation frequency laser power incident on the TM Optical Bench Temperature laser hole diameter on the EH +X face TM reflectivity Electro-Housing mean temperature fluctuation coupling coefficient to differentia Electro-Housing temperature gradient fluctuation coupling coefficient to differentia Test Mass x-axis stiffness Test Mass x-axis stiffness due to GRS	m s^(-1) Hz^-2 Hz W K m m s^-2 K^- m s^-2 K^- s^-2 s^-2	This is an approximation shape at Measured at the end of LPF missio	8 3.38.*f.^2 25000000 2400000000 0.001 293 0.006 1 1 293 293 293 293 293 293 293 293 293 293	8 3.38.*f.^2 25000000 2400000000 0.001 293 0.006 1 1 5 293 0.006 1 1 293 293 293 293 293 293 293 293 293 293
L_dot kF fhet fmod P_incidentTM T_OB D_hole epsilon dg_dT_mean dg_dDT omegasquareSRSxx omegaxysquare	Average SC speed Anti-aliasing filter property Maximal beatnote frequency Modulation frequency laser power incident on the TM Optical Bench Temperature laser hole diameter on the EH +X face TM reflectivity Electro-Housing mean temperature fluctuation coupling coefficient to differentia Electro-Housing temperature gradient fluctuation coupling coefficient to differentia Electro-Housing temperature gradient fluctuation coupling coefficient to differentia Electro-Housing temperature gradient fluctuation coupling coefficient to different Test Mass x-axis stiffness due to GRS Test Mass y to x cross-stiffness	m s^(-1) Hz^-2 Hz Hz W K m m s^-2 K^- m s^-2 K^- s^-2 s^-2 s^-2 s^-2	This is an approximation shape at Measured at the end of LPF missio	8 3.38.*f.^2 2500000 240000000 0.001 293 0.006 1 293 0.006 1 1 293 293 293 293 293 293 293 293 293 293	8 3.38.*f.^2 25000000 2400000000 0.001 293 0.006 1 1 5 293 0.006 1 1 293 293 293 293 293 293 293 293 293 293
L_dot kF fhet fmod P_incidentTM T_OB D_hole epsilon dg_dT_mean dg_dDT omegasquareSxx omegaxysquare omegaxzsquare	Average SC speed Anti-aliasing filter property Maximal beatnote frequency Modulation frequency laser power incident on the TM Optical Bench Temperature laser hole diameter on the EH +X face TM reflectivity Electro-Housing mean temperature fluctuation coupling coefficient to differentia Electro-Housing temperature gradient fluctuation coupling coefficient to differentia Test Mass x-axis stiffness due to GRS Test Mass y to x cross-stiffness TestMass z to x cross-stiffness	m s^(-1) Hz^-2 Hz Hz W K m m s^-2 K^- m s^-2 K^- s^-2 s^-2 s^-2 s^-2 s^-2	This is an approximation shape at Measured at the end of LPF missio	3.38.*f.^2 2500000 240000000 240000000 0.001 293 0.006 12 12 12 2500000 293 0.006 1 293 0.006 1 293 0.006 1 293 0.006 1 293 0.006 1 293 1 293 1 293 1 293 1 293 1 293 293 1 293 293 293 293 293 293 294 295 295 295 295 295 295 295	8 3.38.*f.^2 25000000 2400000000 0.001 293 0.006 1 1 293 0.006 1 1 293 293 293 0.006 1 1 293 293 0.006 1 1 293 0.006 1 1 293 0.006 1 1 293 0.006 1 1 293 0.001 293 0.001 293 0.001 293 0.001 293 0.001 293 0.000 0 0.001 293 0.000 0 0.001 293 0.000 0 0.001 200 0.001 200 0.001 200 0.001 200 0.001 200 200 0.001 200 200 200 0.001 200 200 200 200 200 200 200 200 200
L_dot kF fhet fmod P_incidentTM T_OB D_hole epsilon dg_dT_mean dg_dDT omegasquareX omegasquareGRSxx omegaxysquare omegaxzsquare omegaxphisquare	Average SC speed Anti-aliasing filter property Maximal beatnote frequency Modulation frequency laser power incident on the TM Optical Bench Temperature laser hole diameter on the EH +X face TM reflectivity Electro-Housing mean temperature fluctuation coupling coefficient to differentia Electro-Housing temperature gradient fluctuation coupling coefficient to different Iest Mass x-axis stiffness Test Mass x-axis stiffness Test Mass y to x cross-stiffness TestMass z to x cross-stiffness TestMass phi to x cross-stiffness	m s^(-1) Hz^-2 Hz Hz W K m m s^-2 K^- m s^-2 K^- s^-2 s^-2 s^-2 s^-2 s^-2 s^-2 s^-2	This is an approximation shape at Measured at the end of LPF missio	3.38.*f.^2 2500000 240000000 240000000 0.001 293 0.006 12 12 12 2500000 240000000 0.001 293 0.006 12 12 12 25 14 15 26 27 28 293 293 293 294 295 295 296 297	8 3.38.*f.^2 25000000 2400000000 0.001 293 0.006 1 1 293 0.006 1 1 293 293 0.006 1 1 293 293 0.006 1 1 293 293 0.006 1 1 293 293 0.006 1 1 293 0.006 1 1 293 0.006 1 1 293 0.006 1 1 293 0.006 1 1 293 0.006 1 1 293 0.006 1 1 293 0.006 1 1 293 0.006 1 2 293 0.006 1 2 293 0.006 1 2 293 0.006 1 2 293 0.006 1 2 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 5 1 2 2 5 1 1 2 2 5 1 1 2 2 5 1 1 2 2 5 1 1 2 2 5 1 1 2 2 5 1 1 2 2 5 1 1 2 2 5 1 1 2 2 5 1 1 2 2 5 1 1 2 2 5 1 1 2 2 5 1 1 2 2 5 1 1 2 2 5 1 1 2 2 5 1 1 2 2 5 1 1 2 2 5 1 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 2 5 1 1 2 5 1 5 2 2 5 1 2 5 2 5
L_dot kF fhet fmod P_incidentTM T_OB D_hole epsilon dg_dT_mean dg_dDT omegasquareX omegasquareGRSxx omegaxysquare omegaxzsquare omegaxphisquare	Average SC speed Anti-aliasing filter property Maximal beatnote frequency Modulation frequency laser power incident on the TM Optical Bench Temperature laser hole diameter on the EH +X face TM reflectivity Electro-Housing mean temperature fluctuation coupling coefficient to differentia Electro-Housing temperature gradient fluctuation coupling coefficient to different Test Mass x-axis stiffness Test Mass y to x cross-stiffness TestMass y to x cross-stiffness TestMass phi to x cross-stiffness TestMass eta to x cross-stiffness	m s^(-1) Hz^-2 Hz Hz W K m m s^-2 K^- m s^-2 K^- s^-2 s^-2 s^-2 s^-2 s^-2 s^-2 s^-2 s^	This is an approximation shape at Measured at the end of LPF missions 1	3.38.*f.^2 25000000 240000000 0.001 293 0.006 1293 0.006 11 22500000 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 14 15 15 16 17 18 19 12 12 13 14 15 16 16 16 1012 1012 1012 1012 1012 1012 1012 1012 1012 <tr tr=""></tr>	8 3.38.*f.^2 2500000 240000000 0.001 293 0.006 1 293 0.006 1 1 E-12 2E-11 1 E-12 2E-11 1 E-12 2E-11 1 6 E-08 -8E-07 -7E-07 -6E-08 2 -1.012E-09 -4.6E-10

Noise Sources - CSV files

(

LISA_PerfModel_NoiseInputs

name	type	varname	description	documentation	unit	allocation
TMI equivalent input current noise density of the electronic elect	Source Nois	s_I_seg_el_tmi	Equivalent input curr	Value from GSFC measuren	A Hz^-0.5	3.5E-12.*sqrt(1+(2E-3./f).^4)
LA equivalent input current noise density of the electro	Source Nois	s_I_seg_el_LA	Equivalent input curr	Value from GSFC measuren	A Hz^-0.5	3.5E-12.*sqrt(1+(2E-3./f).^4)
Long Arm PMS	Source Nois	longArmPmsNoise	Apparent displaceme	Currently these are both top	m Hz^-0.5	2E-12.*sqrt(1+(2E-3./f).^4)
Test Mass IFO PMS	Source Nois	tmiPmsNoise	Apparent displaceme	For now these are both top-	m Hz^-0.5	1E-12.*sqrt(1+(2E-3./f).^4)
Laser Frequency Stability	Source Nois	laserFreqStab	The required laser fre	SCI-F ESA ESA-LISA-EST-I	Hz Hz^-0.5	30.*sqrt(1+(2E-3./f).^4)
Reference PMS	Source Nois	refPmsNoise	Apparent displaceme	For now these are both top-	m Hz^-0.5	1E-12.*sqrt(1+(2E-3./f).^4)
REF equivalent input current noise density of the elect	Source Nois	s_l_seg_el_ref	Equivalent input curr	Value from GSFC measuren	A Hz^-0.5	3.5E-12.*sqrt(1+(2E-3./f).^4)
MSS Temperature Stability	Source Nois	S_T_MSS	This applies to the e	This applies to the elements	K^2 Hz^-1	(10e-6).^2.*(1+(2e-3./f).^4)
OB Temperature Stability	Source Nois	S_T_OB	This applies to the er	Technically we could allow e	K^2 Hz^-1	(10e-6).^2.*(1+(2e-3./f).^4)
Telescope Temperature Stability	Source Nois	S_T_Tel	This applies to the er	ntire telescope.	K^2 Hz^-1	(10e-6).^2.*(1+(2e-3./f).^4)
Test Mass temperature stability	Source Nois	S_T_TM	Required stability of	Since this effects only the C	K^2 Hz^-1	(0.25E-6).^2.*(1+(2E-3./f).^4)
OW temperature stability	Source Nois	S_T_OW	This applies to the O	Note that this could be men	K^2 Hz^-1	(10e-6).^2.*(1+(2e-3./f).^4)
Fibre Temperature Stability	Source Nois	S_T_fibre	Expected fibre temp	eLISA-AEI-PRDS-2019-04-	K^2 Hz^-1	(1.4e-3).^2.*(1+(2e-3./f).^4)
Unmodelled Local Oscillator TTL	Source Nois	thermoRefTTL	Allow for in-band the	ermla jitter of the local oscilla	m Hz^-0.5	0.1e-12.*sqrt(1+(2E-3./f).^4)
mean temperature fluctuations of the GRS head	Source Nois	S_T_GRS	Assumed levels of m	Currently an allocation only	K^2 Hz^-1	(43e-6).^2 .* (100e-6./f).^7 + (5e-6).^2
temperature difference fluctuations aross the Electrod	Source Nois	S_DT_EH	Assumed levels of th	Currently an allocation only	K^2 Hz^-1	(1e-5).^2 .* (1e-4./f).^4 + (5e-6).^2
mean temperature fluctuations as seen by the TM thro	Source Nois	S_T_TM_VIEW	Assumed levels of th	Currently an allocation only	K^2 Hz^-1	(1e-3).^2 .* (1e-4./f).^3 + (5e-6).^2
Test Mass DWS Noise	Source Nois	s_DWS_Loc	Local or Test Mass D	Currently an allocation only	rad Hz^-0.5	5E-9.*sqrt(1+(0.7E-3./f).^4)
Jitter y TM wrt MOSA	Source Nois	Sy_tm	TestMass Jitter along	g y with respect to MOSA	m^2 Hz^-1	(5e-9).^2 .* (1 + (1e-3./f)) .* (1 + (f/8e-3).^4) ./ (1 + (t./
Jitter z TM wrt MOSA	Source Nois	Sz_tm	TestMass Jitter along	Currently an allocation only	m^2 Hz^-1	(5e-9).^2 .* (1 + (1e-3./f)) .* (1 + (f/8e-3).^4) ./ (1 + (f./s
Jitter x TM wrt MOSA	Source Nois	Sx_tm	TestMass Jitter along	Currently an allocation only	m^2 Hz^-1	(0.95e-9).^2 .* (1 + (2e-4./f).^2) .* (1 + (f/8e-3).^4) ./ (1
Jitter x TM wrt GRS	Source Nois	S_x_GRS	GRS-OB baseline de	Currently an allocation only	m^2 Hz^-1	(0.3e-9).^2 .* (1 + (1.5e-3./f).^2)
Jitter phi TM wrt MOSA	Source Nois	S_phi_grs	Tm phi angular jitter	Currently an allocation only	rad^2 Hz^-1	(10e-9).^2 .* (1 + (5e-4./f).^4 + (2e-3./f).^2)
Jitter eta TM wrt MOSA	Source Nois	S_eta_grs	TM eta angular jitter	Currently an allocation only	rad^2 Hz^-1	(10e-9).^2 .* (1 + (5e-4./f).^4 + (2e-3./f).^2)
Jitter theta TM wrt MOSA	Source Nois	S_theta_grs	TestMass Jitter along	Currently an allocation only	rad^2 Hz^-1	(200e-9).^2 .* (1 + (1e-3./f))
Jitter angular S/C wrt IS.	Source Nois	SCang_SC_IS	Residual SC angular	Currently an allocation only	rad Hz^-0.5	10E-9.*sqrt(1+(0.8E-3./f).^4)
Jitter phi MOSA wrt IS.	Source Nois	MOSA_phi_IS	Residual MOSA jitter	Currently an allocation only	rad Hz^-0.5	10E-9.*sqrt(1+(0.8E-3./f).^4)
Jitter eta MOSA wrt IS.	Source Nois	MOSA_eta_IS	Residual MOSA jitter	Currently an allocation only	rad Hz^-0.5	1E-9.*sqrt(1+(0.8E-3./f).^4)
Jitter phi MOSA wrt S/C	Source Nois	sphi_MOSA_SC	Residual MOSA Jitte	Currently an allocation only	rad Hz^-0.5	10E-9.*sqrt(1+(0.8E-3./f).^4)
Jitter Uncontrolled MOSA wrt S/C	Source Nois	su_MOSA_SC	Residual uncontrolle	Currently an allocation only	rad Hz^-0.5	10E-9.*sqrt(1+(0.5E-3./f).^4)

II/ Rappels sur la mesure

Mesures Généralités

- Reconstruire une mesure Test Mass/Test Mass, on combine les trois interféromètres.
- On considère les MOSA identiques dans le modele de perf

Fréquences

Time Delay Interferometry

Combinaison d'une mesure long bras et des mesures test masse et référence des bancs 1 et 3. Equivalent mesure test mass/test mass $X_{1.5} = \eta'_1 + \mathcal{D}_{2'}\eta_3 + \mathcal{D}_{2'}\mathcal{D}_2\eta_1 + \mathcal{D}_{2'}\mathcal{D}_2\eta_3\eta'_2 - \eta_1 - \mathcal{D}_3\eta'_2 - \mathcal{D}_3\mathcal{D}_{3'}\eta'_1 - \mathcal{D}_3\mathcal{D}_{3'}\mathcal{D}_{2'}\eta_3$ opérateurs de retard

$$PSD_{X_{1.5}} = 16\sin^2(\omega L)(S_N) + (3 + \cos(2\omega L))(S_\delta)$$

Displacement noise

Acceleration Noise

Budget De Bruit

Cours LISA 2021

Budget De Bruit

Budget DE BRUIT

Budget De Bruit

Cours LISA 2021

III/ Quelques Bruits

Optical Metrology System

- Shot Noise
- Backlink stray light
- Telescope Thermo-mechanical noise

- Plus importante source de bruit OMS ~ 5pm/sqrt(Hz)
- Limite « dur » par design telescope/optique

Bruit en phase [rad/√Hz] LISA band (20µHz - 1Hz)

Bruit à la fréquence hétérodyne [/√Hz]

$$\widetilde{\varphi} = \frac{1}{\mathrm{C/N_0}} = \frac{\widetilde{x}}{x_{\mathrm{signal,rms}}},$$

Amplitude de la porteuse à la fréquence hétérodyne fhet (25MHz)

Dérivation des bruits OMS: électronique, RIN, shot noise, phasemètre.

$$\begin{split} \tilde{I}_{shot} &= \sqrt{2q_e R_{pd}(P_1 + P_2)} \\ \tilde{\phi}_{tot,shot} &= \frac{\sqrt{q_e(P_1 + P_2)}}{\sqrt{R_{pd}\eta_{het}P_1P_2}}. \end{split}$$

Cours LISA 2021

[15] Ewan Fitzsimons. OMS Optical Power Budget. Technical Report LISA-UKOB-INST-RP-001 ,V1.2, UKATC and UGL, 05 2019.

OMS : Backlink Straylight

OMS : Backlink Straylight

- LISA-APC-INST-TN-005_i1.2_StrayLightToPhase
- LISA-AEI-PRDS-RP-001_v1_PRDS_Fibre_Irradiation_Test_Report
- LISA-AEI-PRDS-TN1-2109
- Optical Power Budget, LISA-UKOB-INST-RP-001

$$\delta x(f) = \frac{\text{Ref}_{\text{fibre}}}{\text{Ref}_{\text{fibre}}} \cdot \tilde{s}_{T_{\text{fibre}}} \cdot L_{\text{fibre}}$$

OPD noise/kelvin/ fibre length. Mesure AEI Stabilité en température de la fibre 1.4mk/sqrt(Hz)

$$\tilde{s}_{\text{TMI, Stray, PRDS}} = \sqrt{\epsilon_{\text{pol, Rayl}} \epsilon_{\text{mod, Rayl}}} \frac{P_{\text{SL}\text{-TM}}}{P_{\text{TX}\text{-TM}}} \delta x(f) (1 - \epsilon_{\text{bal}}) ,$$
Educated
Guess
$$\begin{array}{c} \text{Educated} \\ \text{Guess} \end{array} \quad \begin{array}{c} \text{Optical} \\ \text{bench design} \end{array} \quad \begin{array}{c} \text{Optical} \\ \text{Components} \\ \text{uncertainties} = 0.9 \end{array}$$

- Same contribution in reference IFO
- Dominant source of noise for Test Mass IFO: 3.4 pm/sqrt(Hz) and reference IFO: 2 pm/sqrt(Hz)

OMS : Backlink Straylight

Source de straylight non modelisées: 1pm/sqrt(Hz)

- LISA-APC-INST-TN-005_i1.2_StrayLightToPhase
- LISA-AEI-PRDS-RP-001_v1_PRDS_Fibre_Irradiation_Test_Report
- LISA-AEI-PRDS-TN1-2109
- Optical Power Budget, LISA-UKOB-INST-RP-001

OMS : Thermal Noises

d'expansion

thermique du zerodur

On définit une température pour chacun des sous-système

Cours LISA 2021

31

10uK/sqrt(Hz)

[Primes]

OMS : Thermal Noises

- PAAM Piston
- OB Baseplate Thermoelastic
- Long Arm Waveplates
- Test Mass Waveplates
- Mirror Thermoelastic
- Component Thermoelastic
- Long Arm Telescope contribution
- GRS Optical Window Thermoelastic
- Test Mass Thermoelastic

- Impact of correlation not known
- Each contribution is summed up linearly
- What matters for the OMS is the mHz temperature stability
- 10uK/sqrt(Hz) is the limitation of the sensor in LPF.
- We might have some margin (cf: telescope dimension study)
- Inputs from the prime are expected during the phase A extension.

Reference Gravitationnelle

- Stiffness coupling noise
- Thermal Force noise
- Actuation crosstalk

GRS : Stiffness Coupling

- La masse test est dans un champ gravitationnel et électrique non uniforme
- Tout déplacement relatif à la masse test entraine un couplage avec ces champs.

- Valable sur tous les autres axes.
- Dominant à basse fréquence.

GRS : Stiffness Coupling

Bruit accélération **Déformation** Stabilité de la **Stiffness** de la masse thermo-méchanique plateforme en X coefficient test entre OB et le GRS **Axe Drag Free** $-\omega_{xx,TOT}^2 \times (\delta x_{TM} - \delta x_{OB}) - (\omega_{xx,TOT}^2 - \omega_{xx,OB}^2) \times (\delta x_{OB} - \delta x_{GRS}),$ = δg_x [Gravitational [DFACS design & [MSS design and sensing noise] balancing] temperature stability]

Cours LISA 2021

EH/GRS average temperature force noise

During LPF : correlation between the GRS average temperature and the differential acceleration between two test masses.

Cours LISA 2021

EH/GRS average temperature force noise

associated most likely with assymetric outgassing sources, in and immediately around the EH in view of the TM through the laser holes,

Contribution to the LISA budget noise

GRS : Actuation Crosstalk

X axis is drag free - Spacecraft follow Test Mass -> Thrusters

Phi axis is suspension - Test Mass Follow Spacecraft -> Electrostatic actuators

GRS : Actuation Crosstalk

Mystery noise and LPF

TDI residuals & Post Processing

- Modulation noise
- Tilt-To-Length coupling

TDI and Post processing residuals

- Concernent tous les bruits réduits ou ajoutés au sol
- Les bruits réduits dépassent largement les specs

~ 1 ordre de grandeur

TDI : Clock Modulation

- Rappel : le signal et digitalisé à 80MHz par une horloge entachée d'une erreur δt
- On va « imprimer » l'erreur d'horologe sur des sidebands à 2GHz et le transférer au S/C distant
- Le signal d'horloge est dominant sur les sidebands -> mesure indépendante.

image: Time-Delay Interferometry Simulations for the Laser Interferometer Space Antenna. Phd thesis. M.otto

TDI : Clock Modulation

- Chaque IFO va produire un canal de mesure supplémentaire : bande latérale.
- Ce dernier va être soustrait à la mesure principale.

TDI : Clock Modulation

TDI residuals: TTL

TTL is any effect which couples a rotation of the system to a measured pathlength

• Coupling driven entirely by misalignment and imperfections in the OMS

- Split interférométrie chaque interféromètre contribuera au TTL
- Beam Alignment mechanism Calibration au sol
- Calibration en Vol.

Dans le modèle de performance on ne modélise pas les TTL mais leur couplage avec la mesure.

Principe de mesure par interféromètre et par dégré de liberté:

[Noise] = [TTL coupling factor] x [Angular Jitter]

TTL calibration scenario

Beaucoup de contraintes importantes interdépendante :

- Bruit des DWS
- Alignement sol
- Calibration sol
- Calibration vol
- Stabilité de la plateforme

Cours LISA 2021

TTL Effective coefficient decomposition

Table 2: Total budget for TTL in the RX Path.

	TTL per DOF (External)	Correlates with	
Contributor	[mm/rad]	Telescope	Limiting Requirement
Relative alignment between OB and Telescope nominal	4.02	Y	δy,δz = ±30 μm alignment tolerance at OB/Telescope interface
Telescope pupil knowledge error	4.02	Y	δy,δz = ±30 μm uncertainty at the internal (small) pupil
Telescope internal-external axis tolerance	1	Y	$\delta y, \delta z = \pm 1 \text{ mm}$ tolerance on the axis-axis separation of the telescope
Pupil shear	0.2	Y	$\delta y, \delta z = \pm 0.2 \text{ mm} \text{ max offset of the}$ external pupil for any FOV position
Longitudinal-Lateral cross coupling	0.5		$\Delta x = \pm 3 \text{ mm}$ longitudinal alignment tolerance between the OB and Telescope nominal pupils, $\delta \eta, \delta \phi = 10 \mu rad$ boresighting of the telescope
Telescope geometric	0.55		Inherent property of the telescope
Imaging system residual	1.7		Inherent property of the imaging
LO lateral alignment	0.59		δy , $\delta z = \pm 30$ μm alignment tolerance at recombiner
LO waist matching	0.1		$\delta x = \pm 1.5$ m tolerance of positioning the waist to the entrance pupil of the imaging system
QPD lateral	1.96		δy,δz = ±10 µm alignment tolerance
QPD longitudinal	0.08		$\delta x = \pm 2 \text{ mm}$ alignment tolerance
Wavefront Error	0.8		λ/20 RMS total WFE
Other Terms	0.5		To be evaluated
Margin	1		
RX Aperture Stop	0		This is our compensator, so we exclude its alignment from the total budget.
Total (RSS), C _{RX}	6.55		

Reference: LISA-UKOB-INST-TN-004 LISA Optical Alignment Analysis

TDI Transfer Functions

TDI Transfer Functions

$$C_{\rm XX}(\omega) = 16\sin^2\left(\omega\frac{L}{c}\right)\sin^2\left(2\omega\frac{L}{c}\right)$$

Categories of TDI transfer function	XX 2.0	XY 2.0	Example noises in current Performance Model	
Uncorrelated long-arm (sci- ence) and refer- ence IFO	$4 C_{XX}(\omega)$	$C_{\rm XY}(\omega)$	Long-arm noise, Ref- erence noise, Thermal- mechanical noise, OMS unallocated contingency, Unmodelled noises in TDI and post-processing residuals	
Uncorrelated test-mass IFO	$C_{\rm XX}(\omega) \left(3 + \cos(2\omega \frac{L}{c})\right)$	$C_{\rm XY}(\omega)$	Test-mass IFO noises	1
Uncorrelated test-mass acceler- ation	4 $C_{XX}(\omega) \left(3 + \cos\left(2\omega \frac{L}{c}\right)\right)$ Le mouvement de la mas test est mesuré deux foi	4 $C_{\rm XY}(\omega)$ se s.	Single test-mass accelera- tion noise	
Fully-correlated telescope	$4 C_{\rm XX}(\omega)(3 + \cos\left(2\omega\frac{L}{c}\right))$		Not yet implemented	

Cours LISA 2021

TDI Transfer Functions

		ratio TDI transfer functions b	etween TM IFO and Long A	Arm IFO	
1.5					
1-					- -
0.5				Ratio of Trans	sfer Functio
10 ⁻⁵	10 ⁻⁴	10⁻³ frequ	10 ⁻² iencies [Hz]	10 ⁻¹	10 ⁰

Cours LISA 2021

Budget De Bruit

IV/ Limitations

Thermal and Platform stability : correlations

- Héritage Pathfinder limité au GRS
- Design LISA différent

- Héritage Pathfinder sur l'axe sensible
- Jitters angulaires différents.

Non stationarity

M. Armano et al. Beyond the Required LISA Free-Fall Performance: New LISA Path.nder Results down to 20 μ Hz. Phys. Rev. Le., 120:061101, 2018.

Glitches

Calibration

- Clock Noise / TTL / Stiffness ?
- Du fait de la présence du bruit laser TDI indispensable (simulation)

Missing noises

- Modélisation du Phasemètre
- Modélisation des DWS.
- Résidu du mouvement du SC sur l'axe sensible.
- Interpolation Laser
- Armlength Stochastic
- Sidebands coupling because of clock calibration.
- Modelling of the Anti Aliasing filter in the performance model.
- Long Arm Line Of Sight alignment.

Acces au data pack de la release 2.0.1 (Technical Note+ release Note + Changelog):

https://atrium.in2p3.fr/87d2870c-5aef-4f4d-8a60-9a3afc4fe62f

Site web pour produire plots et récupérés les données de WebNSDF :

https://perf-lisa.in2p3.fr/

contact : <u>martino@apc.in2p3.fr</u>