

PLUME PROJECT

Pixel Ladder with Ultra-low Material Embedding

Nathalie CHON-SEN on behalf of the CMOS Sensors & ILC Group, IPHC/Strasbourg, Bristol and Oxford University, DESY.

http://iphc.in2p3.fr/-CMOS-ILC-.html

SOCLE meeting 9-10 Novembre 2009

The 2 key elements for design and fabrication :

- the flex on which sensors are connected
- the ladder structure supporting the flex with the sensors

- *Ladder developped along 2 parallel approaches :* classical : sensors (50 μm) flex cable foam flex cable sensors
 - **innovating** : sensors (35 μm) wrapped in polymerised film (<10 μm) => adaptable to various mechanical supports (beam pipe)

PLUME follows the classical approach

SERWIETE follows the innovating one

The PLUME project

Objectives :

- to achieve a double-sided ladder prototype for an ILC vertex detector by **2012**
- to achieve a double-stated ladder prototype for an file vertex detector by 2012 material budget ~ 0.16%X₀ (*LOI Target Value*)
 to quantify power pulsing and air-flow cooling impacts on sensor intrinsic resolution
 to evaluate benefits of double-sided concept (mini-vectors) :
 σ_{ip}, alignment, shallow angle pointing (<15-30°), elongated vs squared pixels

Collaboration :

- Bristol, DESY, Oxford, Strasbourg Synergy with vertex Detector of CBM fair

Perspectives :

- to be studied with infrastructure foreseen in AIDA project
- interests for (s)LHC experiments ? Ladder and sensors have been proposed within the context of ALICE vertex detector upgrade (2018 shutdown)

Objectives:

- to evaluate the ladder mechanical assembly difficulties
- to demonstrate that a low material budget ladder, equipped with CMOS sensors on both sides, can provide the adequate resolution on the track parameters for a particle crossing the two sensors.

Initial concept :

- based on an existing large size sensor : MIMOSA-20 (analog output, ~ 2ms @ 50 MHz) area of 1 × 2 cm², thinned down to 50 μm
 use of flex cables developed for the CBM ladder demonstrator by IK-Frankfurt/CBM
- **300 μm** thick **polyimide** slab
- use of **silicon carbide (SiC) foam** (8% density) as a mechanical structure which supports the two flex
- material budget ~ 0.6% Xo

Prototype Ladder – 2009 goal

Experimental design

PLUME : the mechanical prototype

Prototype Ladder – 2009 Status

<u>Status :</u>

- Two ladders have been assembled : a mechanical one and a prototype ladder
- The prototype ladder is currently being tested @ CERN-SPS (~120 GeV π -)

2009 : Flex design and fabrication (not fully optimized) for 6 binary readout sensors

2010 : Better flex design and fabrication

Q1 (=first quarter of) => mounting and assembly of ladder with 2×6 MIMOSA-26 Q2+Q3 => electrical, mechanical and thermal test of ladder

	Sensors	Material Budget	tr.o	Concept
2010	2×6 MIMOSA-26	~0.6 % X0	110µs	Inner Layer
2011	2×6 MIMOSA-26 TB	≤ 0.4 % X0	~50µs	Inner Layer
2012	a) 1×6 MIMOSA-26 TB 1×6 MIMOSA-26 TB	≤ 0.3 % X0	~50µs ~10µs	Inner Layer
	b) 2×6 MIMOSA-26 with ADC (pitch 35µm)	≤ 0.3 % X0	~100µs	Outer Layer

SERWIETE

Hadron Physics-2 project (FP7) : **SEnsor Row Wrapped In Extra-Thin Enveloppe**

Objectives:

- to achieve a sensor assembly mounted on flex and wrapped in polymerised film with < 0.1 % X₀ for 1 unsupported layer (sensors – flex - film)
- to evaluate the possibility of mounting supportless ladder on cylindrical surface (used as mechanical support) => proof of principle expected in 2012

Working program :

- prototype Nr. 1 (2010) made of 1 sensor : MIMOSA-18 (analog output, ~4 ms @16MHz) - prototype Nr. 2 (2011) made of 3 sensors :
- **MIMOSA-26** (binary output, $\sim 110 \,\mu s @80 MHz$)

Context of development :

- Collaboration with IKF-Frankfurt and GSI/Darmstadt (CBM coll.)
- Synergy with Vertex Detector R&D for CBM, ILC, ALICE (?) etc.

Fully functional microprocessor chip in flexible plastic envelope. *Courtesv of Piet De Moor, IMEC, Belgium

- <u>On-beam test infrastructure:</u> Large Area beam Telescope (LAT) Alignment Investigation Devices (AID): mini-telescope and/or ladder box Very thin removable target

- <u>Off-beam test infrastructure:</u> thermo-mechanical studies, including effect of air-flow based power extracting system power cycling effect in strong magnetic field, e.g. Lorentz forces, on ultra-light ladders

Summary

Problem :

How to preserve the intrinsic good resolution of CMOS sensors once they've been integrated in a vertex detector system ?

The 2009 integration study of a ladder satisfying the ILD requirements (double-sided ladder, 3 μm resolution with less that 0.3 % X0 material budget) has started !

We intend to show that the goals defined in the LOI are reachable

In parallel the sensors conditioning is being developped.

Tests that will be implemented :

power-pulsing mode
 air-flow cooling (temperature distribution, mechanical displacement, vibration)
 operation in magnetic field

Material budget along a path crossing the 2 sensors.

Flex material budget :

sum of three component thicknesses weighted by their respective radiation length, taking into account a conservative fill factor for the copper lines of 25%.

layer	thickness (µm)	X0 (cm)
polyimide	150	28
adhesive	100	35
copper	36×0.25	14.3
AVERAGE	300	20.5

Ladder material budget :

sensors are glued to flex and both flex to foam => an adhesive layer appears 4 times. Its thickness of 20 μ m and X0 = 35cm (acrylat adhesive) are first very preliminary hypothesis.

material	X0(cm)	thickness (um)	budget (%X0)
SiC foam	8.7×8%	2000	0.18
sensor	9.36	50×2	0.11
adhesive	35	20×4	0.02
flex average	20.5	300×2	0.29
TOTAL			0.60