Retour sur une expérience de développement sous environnement PVSS : (le calorimètre de LHCb)

Introduction: contexte

Point de vue d'un développeur d'application sur une expérience : donc forcément pas complet

D'abord le contexte de l'expérience

Pas d'expérience de PVSS au préalable

Intégration dans l'équipe calorimétrie de LHCb (Après la course)

- Conception et intégration finalisée
- En production.

Introduction: contexte

Tout ce qui est essentiel est opérationnel

Mais

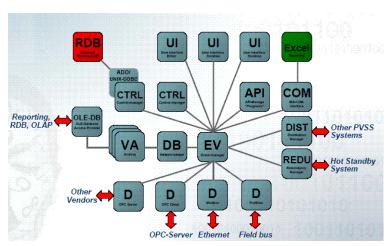
Des taches secondaires restent à faire

- Monitoring
- Alertes,
- Archivage
- Outil de diagnostique et de visualisation.

Sur plusieurs années.

- Maintenance
- Amélioration
- Modification

Les concepteurs d'origine ne sont peut-être plus présents.



Introduction: contexte

PVSS a t'il été un atout ou un handicap?

Notre système slow control sous PVSS est-il évolutif?

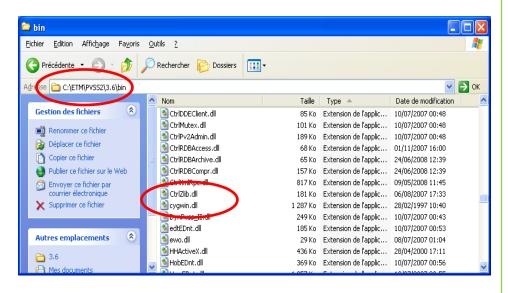
PVSS : un système structuré

- Dans un projet : plusieurs contrôleurs avec chacun leurs taches.
- Des sous projets distincts en fonction des parties à gérer
- Utilisation des « Composants »

PVSS Project Numbers

<u>System</u>	<u>Number</u>	<u>Project Name</u>	<u>Description</u>	PC
PRS	180	PRSDAQC1	PreShower? -SPD DAQ Domain for the C-side	psdaqhvc01w
	181	PRSDAQA1	PreShower? -SPD DAQ Domain for the A-side	psdaqhva01w
	182	PS1	PreShower? -SPD Main Subdetector project	psdaqhvc01w
	183	PSTELL1	PRS TELL1 Project	hcdaq01
	184	CARACKMON1	Platform racks monitoring	cades02w
	185	PSHVC1	PreShower? -SPD HV domain C-side	psdaqhvc01w
	186	PSHVA1	PreShower? -SPD HV domain A-side	psdaqhva01w
	187	CADCSDSS	Test project to get DSS alarms	cades02w
	188	SPDDCST1	VFE Temperature monitoring for the SPD	cades02w
	189	PSDCST1	ELMB VFE Temperature probes	cadcs02w
ECAL	190	ECDAQC1	ECAL DAQ Domain C-side	ecdaqhvc01w
	191	ECDAQA1	ECAL DAQ Domain A-side	ecdaqhva01w
	192	EC1	ECAL Main Subdetector project	ecdaqhvc01w
	193	ECTELL1	ECAL TELL1 Project	ecdaq01

Linux ou Windows


Cela fonctionne dans les 2 cas

Calorimètre de LHCb entièrement sous environnement Windows.

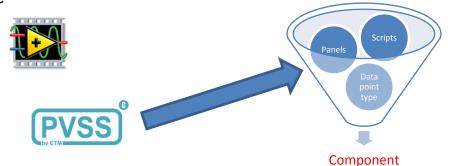
Les PC et les projets dans la caverne sont accessible depuis (Windows Terminal Serveur)

le code source de PVSS semble être en natif linux

Quelques traces de l'émulateur cygwin ???

développement en amont (banc de test)

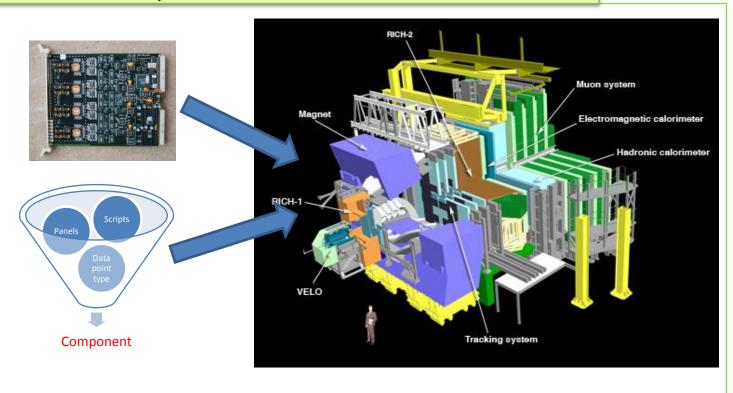
Développement des bancs de tests


Conception de cartes spécifiques (Trigger, FEB, etc.)

- Test fonctionnel (validation du prototype)
- Besoin de tester le code embarqué (FPGA,)
- Test de production

Besoin de concevoir un banc un banc plus ou moins complexe.

- Pilotage des instrumentations (oscilloscopes, générateurs etc....)
- Le pilotage de carte (registres, mémoire)



développement en amont (banc de test)

Et intégration sur le site rapide

Couche de plus en plus haut niveau

Le contenant et le contenu

LHCb

Application calorimètre LHCb

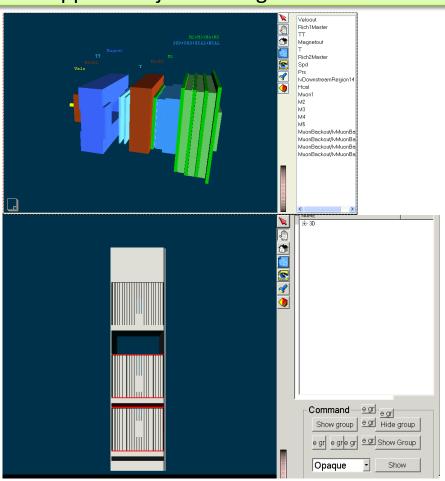
CERN

- 3D viewer
- JCOB framework

EN Engineering Department

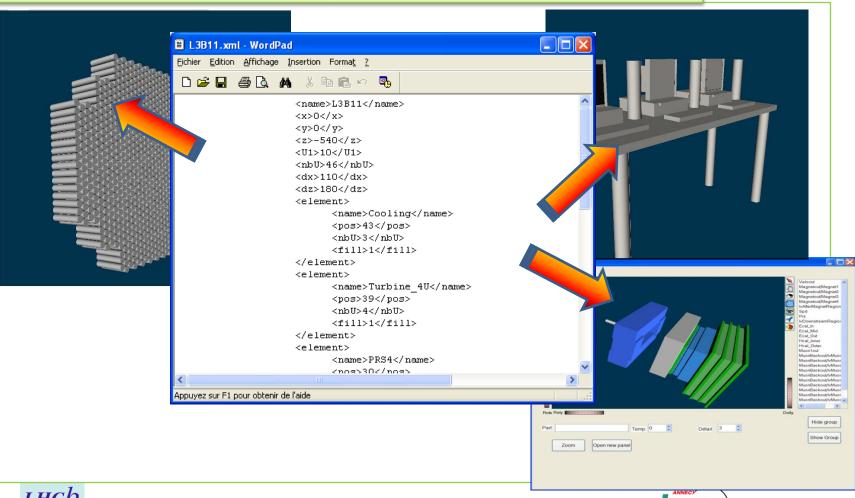
PVSS

• ETM version 3.8


SIEMENS

Exemple de système 3D

Même applicatif : juste change la référence vers les fichiers de représentation

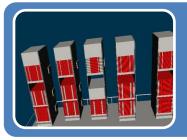


Exemple de système 3D

Pour LHCb mais aussi d'autres projets

lapp)

Conclusion:


PVSS + framework = des outils efficaces

FSM Final State Machine

Alerte sur les Data Points

Archivage en vue du diagnostique

Outils de visualisation, de contrôle (3D)

Interface détaillée pour piloter et vérifier finement les composants de l'expérience

I ANNECY |