Neutrino mass hierarchies in the double seesaw model

Carla Biggio

Max-Planck-Institut für Physik München, Germany

In collaboration with A. Ibarra

Rencontres de Physique de Particules - RPP 2010 Lyon, 25-27/01/2010

1 Introduction: fermion mass hierarchies

2 Neutrino mass hierarchies in the type I seesaw

3 Neutrino mass hierarchies in the type I double seesaw

1 Introduction: fermion mass hierarchies

2 Neutrino mass hierarchies in the type I seesaw

3 Neutrino mass hierarchies in the type I double seesaw

4 Summary and conclusions

Large hierarchies for charged fermion masses

$m_t=171.2\pm2.1~{\rm GeV}$	$m_b = 4.20^{+0.17}_{-0.07}~{\rm GeV}$	$m_{ au} = 1.78~{ m GeV}$
$m_c = 1.27^{+0.07}_{-0.11} \; {\rm GeV}$	$m_s = 104^{+26}_{-34}~{ m MeV}$	$m_{\mu}=105~{ m MeV}$
$m_u=1.5-3.3~{\rm MeV}$	$m_d=3.5-6.0~{\rm MeV}$	$m_e=0.51~{\rm MeV}$
$m_t/m_c\sim 125-150$	$m_b/m_s\sim 30-60$	$m_{ au}/m_{\mu} \sim 17$
$m_c/m_u\sim 350-900$	$m_s/m_d\sim 11-37$	$m_\mu/m_e\sim 205$

What about neutrinos?

 $\Delta m_{12}^2 = 7.67 \times 10^{-5} \text{eV}^2$ $|\Delta m_{23}^2| = 2.46 \times 10^{-3} \text{eV}^2$

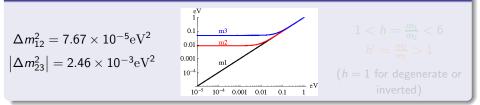
 $1 < h = rac{m_1}{m_2} < 6$ $h' = rac{m_1}{m_1} > 1$

```
(h = 1 for degenerate or inverted)
```

Large hierarchies for charged fermion masses

$m_t=171.2\pm2.1~{\rm GeV}$	$m_b = 4.20^{+0.17}_{-0.07}~{\rm GeV}$	$m_{ au} = 1.78~{ m GeV}$
$m_c = 1.27^{+0.07}_{-0.11} \; {\rm GeV}$	$m_s = 104^{+26}_{-34}~{ m MeV}$	$m_\mu = 105~{ m MeV}$
$m_u=1.5-3.3~{\rm MeV}$	$m_d=3.5-6.0~{\rm MeV}$	$m_e=0.51~{\rm MeV}$
$m_t/m_c\sim 125-150$	$m_b/m_s\sim 30-60$	$m_{ au}/m_{\mu}\sim 17$
$m_c/m_u\sim 350-900$	$m_s/m_d\sim 11-37$	$m_\mu/m_e\sim 205$

What about neutrinos?

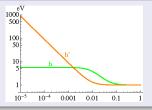


Large hierarchies for charged fermion masses

$m_t=171.2\pm2.1~{\rm GeV}$	$m_b = 4.20^{+0.17}_{-0.07}{\rm GeV}$	$m_{ au} = 1.78~{ m GeV}$
$m_c = 1.27^{+0.07}_{-0.11}~{\rm GeV}$	$m_s = 104^{+26}_{-34}~{\rm MeV}$	$m_\mu = 105~{ m MeV}$
$m_u=1.5-3.3~{\rm MeV}$	$m_d = 3.5 - 6.0 \; { m MeV}$	$m_e=0.51~{\rm MeV}$
$m_t/m_c\sim 125-150$	$m_b/m_s\sim 30-60$	$m_{ au}/m_{\mu}\sim 17$
$m_c/m_u\sim 350-900$	$m_s/m_d\sim 11-37$	$m_\mu/m_e\sim 205$

What about neutrinos?

$$\begin{split} \Delta m_{12}^2 &= 7.67 \times 10^{-5} \mathrm{eV}^2 \\ \left| \Delta m_{23}^2 \right| &= 2.46 \times 10^{-3} \mathrm{eV}^2 \end{split}$$



 $1 < h = \frac{m_3}{m_2} < 6$ $h' = \frac{m_2}{m_1} > 1$

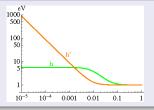
(h = 1 for degenerate or inverted)

Large hierarchies for charged fermion masses

$m_t=171.2\pm2.1~{\rm GeV}$	$m_b = 4.20^{+0.17}_{-0.07}{\rm GeV}$	$m_{ au} = 1.78~{ m GeV}$
$m_c = 1.27^{+0.07}_{-0.11}~{\rm GeV}$	$m_s = 104^{+26}_{-34}~{ m MeV}$	$m_\mu = 105~{ m MeV}$
$m_u=1.5-3.3~{\rm MeV}$	$m_d=3.5-6.0~{\rm MeV}$	$m_e=0.51~{\rm MeV}$
$m_t/m_c\sim 125-150$	$m_b/m_s\sim 30-60$	$m_{ au}/m_{\mu}\sim 17$
$m_c/m_u\sim 350-900$	$m_s/m_d\sim 11-37$	$m_\mu/m_e\sim 205$

What about neutrinos?

$$\begin{split} \Delta m_{12}^2 &= 7.67 \times 10^{-5} \mathrm{eV}^2 \\ \left| \Delta m_{23}^2 \right| &= 2.46 \times 10^{-3} \mathrm{eV}^2 \end{split}$$



 $1 < h = rac{m_3}{m_2} < 6$ $h' = rac{m_2}{m_1} > 1$

(h = 1 for degenerate or inverted)

Introduction: fermion mass hierarchies

2 Neutrino mass hierarchies in the type I seesaw

3 Neutrino mass hierarchies in the type I double seesaw

4 Summary and conclusions

Dirac vs Majorana masses?

$$\mathcal{L}^{Iepton} = -\overline{\ell_L}HY_e e_R - \overline{\ell_L}\widetilde{H}Y_{\nu}^{\dagger}N_R + \text{h.c.}$$

- We do not know the mechanism which generates Yukawa couplings, but it seems it produces them hierarchical (see Y_u , Y_d , Y_e)
- Hierarchical $Y_{\nu} \Rightarrow h >> 6$

 \Rightarrow Dirac masses disfavoured from the point of view of hierarchies

The seesaw mechanism

$$\mathcal{L}^{lepton} = -\overline{\ell_L}HY_e e_R - \overline{\ell_L}\widetilde{H}Y_{\nu}^{\dagger}N_R + \frac{1}{2}\overline{N_R}M_NN_R^{\ c} + \text{h.c.}$$

• If $M >> M_{EW} \Rightarrow m_{\nu} = \frac{v^2}{2} Y^T M^{-1} Y$

⇒ naturally small neutrino masses. What about hierarchies?

Dirac vs Majorana masses?

$$\mathcal{L}^{Iepton} = -\overline{\ell_L}HY_e e_R - \overline{\ell_L}\widetilde{H}Y_{\nu}^{\dagger}N_R + \text{h.c.}$$

- We do not know the mechanism which generates Yukawa couplings, but it seems it produces them hierarchical (see Y_u , Y_d , Y_e)
- Hierarchical $Y_{\nu} \Rightarrow h >> 6$

 \Rightarrow Dirac masses disfavoured from the point of view of hierarchies

The seesaw mechanism

$$\mathcal{L}^{lepton} = -\overline{\ell_L}HY_e e_R - \overline{\ell_L}\widetilde{H}Y_{\nu}^{\dagger}N_R + \frac{1}{2}\overline{N_R}M_NN_R^{\ c} + \text{h.c.}$$

• If $M >> M_{EW} \Rightarrow m_{\nu} = \frac{v^2}{2} Y^T M^{-1} Y$

 \Rightarrow naturally small neutrino masses. What about hierarchies?

The "naive" seesaw

$$m_1 \sim \frac{v^2}{2} \frac{y_1^2}{M_1}$$
 $m_2 \sim \frac{v^2}{2} \frac{y_2^2}{M_2}$ $m_3 \sim \frac{v^2}{2} \frac{y_3^2}{M_3}$ \Rightarrow $h = \frac{m_3}{m_2} \sim \frac{y_3^2}{y_2^2} \frac{M_2}{M_3}$

• All known Yukawa couplings are hierarchical \Rightarrow also $Y_{\nu i}$ • Majorana masses: we do not know

•
$$M_i$$
 hierarchical (as y_i) $\rightarrow h \sim (y_3/y_2)$

•
$$M_i$$
 very hierarchical (as y_i^2) $\rightarrow h \sim 1$

• Starting in a basis where $M_N = D_M$

$$m_{\nu} \propto Y^{T} D_{M}^{-1} Y = V_{L}^{*} D_{Y} V_{R}^{T} D_{M}^{-1} V_{R} D_{Y} V_{L}^{\dagger}$$

The "naive" seesaw

$$m_1 \sim \frac{v^2}{2} \frac{y_1^2}{M_1}$$
 $m_2 \sim \frac{v^2}{2} \frac{y_2^2}{M_2}$ $m_3 \sim \frac{v^2}{2} \frac{y_3^2}{M_3}$ \Rightarrow $h = \frac{m_3}{m_2} \sim \frac{y_3^2}{y_2^2} \frac{M_2}{M_3}$

The seesaw mechanism tends to generate large hierarchies

- All known Yukawa couplings are hierarchical \Rightarrow also $Y_{\nu i}$
- Majorana masses: we do not know
 - M_i degenerate $\rightarrow h \sim (y_3/y_2)^2$
 - M_i hierarchical (as y_i) $\rightarrow h \sim (y_3/y_2)$
 - M_i very hierarchical (as y_i^2) $\rightarrow h \sim 1$

hierarchy is reinforced h still hierarchical

Including mixing effects in the right-handed sector

• Starting in a basis where $M_N = D_M$

$$m_{\nu} \propto Y^{T} D_{M}^{-1} Y = V_{L}^{*} D_{Y} V_{R}^{T} D_{M}^{-1} V_{R} D_{Y} V_{L}^{\dagger}$$

The "naive" seesaw

$$m_1 \sim \frac{v^2}{2} \frac{y_1^2}{M_1}$$
 $m_2 \sim \frac{v^2}{2} \frac{y_2^2}{M_2}$ $m_3 \sim \frac{v^2}{2} \frac{y_3^2}{M_3}$ \Rightarrow $h = \frac{m_3}{m_2} \sim \frac{y_3^2}{y_2^2} \frac{M_2}{M_3}$

The seesaw mechanism tends to generate large hierarchies

- All known Yukawa couplings are hierarchical \Rightarrow also $Y_{\nu i}$
- Majorana masses: we do not know
 - M_i degenerate $\rightarrow h \sim (y_3/y_2)^2$
 - M_i hierarchical (as y_i) $\rightarrow h \sim (y_3/y_2)$
 - M_i very hierarchical (as y_i^2) $\rightarrow h \sim 1$

hierarchy is reinforced h still hierarchical

Including mixing effects in the right-handed sector

• Starting in a basis where $M_N = D_M$

$$m_{\nu} \propto Y^{T} D_{M}^{-1} Y = V_{L}^{*} D_{Y} V_{R}^{T} D_{M}^{-1} V_{R} D_{Y} V_{L}^{\dagger}$$

The "naive" seesaw

$$m_1 \sim \frac{v^2}{2} \frac{y_1^2}{M_1}$$
 $m_2 \sim \frac{v^2}{2} \frac{y_2^2}{M_2}$ $m_3 \sim \frac{v^2}{2} \frac{y_3^2}{M_3}$ \Rightarrow $h = \frac{m_3}{m_2} \sim \frac{y_3^2}{y_2^2} \frac{M_2}{M_3}$

The seesaw mechanism tends to generate large hierarchies

- All known Yukawa couplings are hierarchical \Rightarrow also $Y_{\nu i}$
- Majorana masses: we do not know
 - M_i degenerate $\rightarrow h \sim (y_3/y_2)^2$
 - M_i hierarchical (as y_i) $\rightarrow h \sim (y_3/y_2)$
 - M_i very hierarchical (as $y_i^2)
 ightarrow h \sim 1$

hierarchy is reinforced h still hierarchical

Including mixing effects in the right-handed sector

• Starting in a basis where $M_N = D_M$

$$m_{\nu} \propto Y^{T} D_{M}^{-1} Y = V_{L}^{*} D_{Y} V_{R}^{T} D_{M}^{-1} V_{R} D_{Y} V_{L}^{\dagger}$$

• the eigenvalues depend on D_M , D_Y and V_R

Carla Biggio (MPI)

The "naive" seesaw

$$m_1 \sim \frac{v^2}{2} \frac{y_1^2}{M_1}$$
 $m_2 \sim \frac{v^2}{2} \frac{y_2^2}{M_2}$ $m_3 \sim \frac{v^2}{2} \frac{y_3^2}{M_3}$ \Rightarrow $h = \frac{m_3}{m_2} \sim \frac{y_3^2}{y_2^2} \frac{M_2}{M_3}$

The seesaw mechanism tends to generate large hierarchies

- All known Yukawa couplings are hierarchical \Rightarrow also $Y_{\nu i}$
- Majorana masses: we do not know
 - M_i degenerate $\rightarrow h \sim (y_3/y_2)^2$
 - M_i hierarchical (as y_i) $\rightarrow h \sim (y_3/y_2)$
 - M_i very hierarchical (as $y_i^2)
 ightarrow h \sim 1$

hierarchy is reinforced h still hierarchical

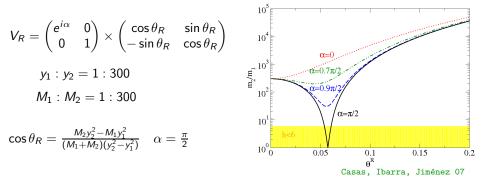
Including mixing effects in the right-handed sector

• Starting in a basis where $M_N = D_M$

$$m_{\nu} \propto Y^T D_M^{-1} Y = V_L^* D_Y V_R^T D_M^{-1} V_R D_Y V_L^{\dagger}$$

Seesaw: 2 generations

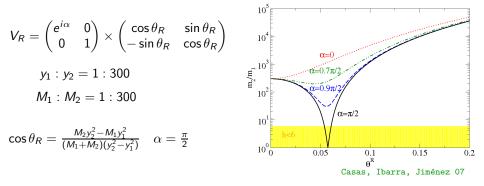
• Varying the V_R parameters θ_R and α , the hierarchy can vary



Mild hierarchy can be reproduced with fine-tuning of high energy parameters

Seesaw: 2 generations

• Varying the V_R parameters θ_R and α , the hierarchy can vary



• Mild hierarchy can be reproduced with fine-tuning of high energy parameters

Seesaw: 3 generations

 $M_1: M_2: M_3 = 1:300: (300)^2$ $y_1: y_2: y_3 = 1: 300: (300)^2$ V12=0 V12=0.4V12=0.95 1.0 1.0 1.0 0.8 0.8 0.8 0.6 0.6 0.6 V23 V23 V23 0.4 0.4 0.4 0.2 0.2 0.2 0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.04 0.00 0.02 0.04 0.06 0.08 0.10 0.10 0.06 0.08 0.10 V13 V13 V13 Casas, Ibarra, Jiménez 07

- Hierarchical Majorana masses: mild hierarchy can be accomodated \rightarrow no need of cancellations in the 3 generation case $\downarrow V_{\downarrow}$ is constrained by the requirement of h < 6 ("CKM like")
 - $ightarrow V_R$ is constrained by the requirement of h < 6 ("CKM-like")
- Degenerate Majorana masses: soft hierarchy only with cancellations among V_R elements

Is there any mechanism where mild hierarchies arise more naturally?

Seesaw: 3 generations

 $M_1: M_2: M_3 = 1:300:(300)^2$ $y_1: y_2: y_3 = 1: 300: (300)^2$ V12=0 V12=0.4V12=0.95 1.0 1.0 1.0 0.8 0.8 0.8 0.6 0.6 0.6 V23 V23 V23 0.4 0.4 0.4 0.2 0.2 02 0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.10 0.04 0.06 0.08 0.10 V13 V13 V13 Casas, Ibarra, Jiménez 07

- Hierarchical Majorana masses: mild hierarchy can be accomodated \rightarrow no need of cancellations in the 3 generation case \downarrow V_a is constrained by the requirement of h < 6 ("CKM like")
 - $ightarrow V_R$ is constrained by the requirement of h < 6 ("CKM-like")
- Degenerate Majorana masses: soft hierarchy only with cancellations among V_R elements

Is there any mechanism where mild hierarchies arise more naturally?

Seesaw: 3 generations

 $y_1: y_2: y_3 = 1: 300: (300)^2$ $M_1: M_2: M_3 = 1:300:(300)^2$ V12=0 V12=0.4V12=0.95 1.0 1.01.0 0.8 0.8 0.8 0.6 0.6 0.6 V23 V23 V23 0.4 0.4 0.4 0.2 0.2 0.2 0.00 0.02 0.04 0.08 0.00 0.02 0.00 0.02 0.040.06 0.08 0.10 0.06 0.10 0.04 0.06 0.08 0.10 V13 V13 V13 Casas, Ibarra, Jiménez 07

- Hierarchical Majorana masses: mild hierarchy can be accomodated \rightarrow no need of cancellations in the 3 generation case \rightarrow Va is constrained by the requirement of h < 6 ("CKM like")
 - $ightarrow V_R$ is constrained by the requirement of h < 6 ("CKM-like")
- Degenerate Majorana masses: soft hierarchy only with cancellations among V_R elements

Is there any mechanism where mild hierarchies arise more naturally?

Introduction: fermion mass hierarchies

2) Neutrino mass hierarchies in the type I seesaw

3 Neutrino mass hierarchies in the type I double seesaw

4 Summary and conclusions

The type I double seesaw

The double seesaw

• Add to the SM 3 singlets N_R and 3 singlets S:

$$\mathcal{L} = -\bar{\ell}HY_e e_R - \bar{\ell}\tilde{H}Y_\nu N_R - M\bar{S}N_R - \mu\bar{S}S^c$$
$$m_\nu = \frac{v^2}{2}Y^T M^{-1}\mu(M^T)^{-1}Y = \frac{v^2}{2}Y^T M_{eff}^{-1}Y \quad \text{with} \quad M_{eff} = M^T\mu^{-1}M$$

Hierarchies in the "naive" double seesaw

$$m_1 \sim \frac{v^2}{2} \frac{y_1^2 \mu_1}{M_1^2} \quad m_2 \sim \frac{v^2}{2} \frac{y_2^2 \mu_2}{M_2^2} \quad m_3 \sim \frac{v^2}{2} \frac{y_3^2 \mu_3}{M_3^2} \quad \Rightarrow \quad h = \frac{m_3}{m_2} \sim \frac{y_3^2}{y_2^2} \frac{M_2^2}{M_3^2} \frac{\mu_3}{\mu_2}$$

y_i and M_i are both Dirac parameters ⇒ it's natural they are hierarchical
 μ_i are Majorana parameters ⇒ can be hierarchical or degenerate
 Ex.: μ_i/μ_j ~ 1 y_i/y_j ~ M_i/M_j ⇒ h ~ 1

The double seesaw naturally gives mild hierarchies!

The type I double seesaw

The double seesaw

• Add to the SM 3 singlets N_R and 3 singlets S:

$$\mathcal{L} = -\bar{\ell}HY_e e_R - \bar{\ell}\tilde{H}Y_\nu N_R - M\bar{S}N_R - \mu\bar{S}S^c$$
$$m_\nu = \frac{v^2}{2}Y^T M^{-1}\mu(M^T)^{-1}Y = \frac{v^2}{2}Y^T M_{eff}^{-1}Y \quad \text{with} \quad M_{eff} = M^T \mu^{-1}M$$

Hierarchies in the "naive" double seesaw

$$m_1 \sim \frac{v^2}{2} \frac{y_1^2 \mu_1}{M_1^2} \quad m_2 \sim \frac{v^2}{2} \frac{y_2^2 \mu_2}{M_2^2} \quad m_3 \sim \frac{v^2}{2} \frac{y_3^2 \mu_3}{M_3^2} \quad \Rightarrow \quad h = \frac{m_3}{m_2} \sim \frac{y_3^2}{y_2^2} \frac{M_2^2}{M_3^2} \frac{\mu_3}{\mu_2}$$

• y_i and M_i are both Dirac parameters \Rightarrow it's natural they are hierarchical • μ_i are Majorana parameters \Rightarrow can be hierarchical or degenerate • Ex.: $\frac{\mu_i}{\mu_i} \sim 1$ $\frac{y_i}{y_i} \sim \frac{M_i}{M_i} \Rightarrow h \sim 1$

The double seesaw naturally gives mild hierarchies!

The type I double seesaw

The double seesaw

• Add to the SM 3 singlets N_R and 3 singlets S:

$$\mathcal{L} = -\bar{\ell}HY_e e_R - \bar{\ell}\tilde{H}Y_\nu N_R - M\bar{S}N_R - \mu\bar{S}S^c$$
$$m_\nu = \frac{v^2}{2}Y^T M^{-1}\mu(M^T)^{-1}Y = \frac{v^2}{2}Y^T M_{eff}^{-1}Y \quad \text{with} \quad M_{eff} = M^T \mu^{-1}M$$

Hierarchies in the "naive" double seesaw

$$m_1 \sim \frac{v^2}{2} \frac{y_1^2 \mu_1}{M_1^2} \quad m_2 \sim \frac{v^2}{2} \frac{y_2^2 \mu_2}{M_2^2} \quad m_3 \sim \frac{v^2}{2} \frac{y_3^2 \mu_3}{M_3^2} \quad \Rightarrow \quad h = \frac{m_3}{m_2} \sim \frac{y_3^2}{y_2^2} \frac{M_2^2}{M_3^2} \frac{\mu_3}{\mu_2}$$

• y_i and M_i are both Dirac parameters \Rightarrow it's natural they are hierarchical • μ_i are Majorana parameters \Rightarrow can be hierarchical or degenerate • Ex.: $\frac{\mu_i}{\mu_i} \sim 1$ $\frac{y_i}{y_i} \sim \frac{M_i}{M_i} \Rightarrow h \sim 1$

The double seesaw naturally gives mild hierarchies!

$$m_{\nu} \propto Y^{T} D_{M}^{-1} \mu D_{M}^{-1} Y = V_{L}^{*} D_{Y} V_{R}^{T} D_{M}^{-1} \Omega^{\dagger} D_{\mu} \Omega^{*} V_{R} D_{Y} V_{L}^{\dagger}$$

Hierarchical M and degenerate μ

$$y_1: y_2 = M_1: M_2 = 1:300$$

 $\mu_1 = \mu_2$

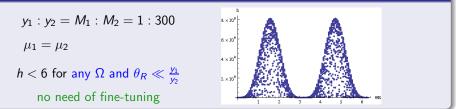
h < 6 for any Ω and $\theta_R \ll rac{y_1}{y_2}$ no need of fine-tuning

Hierarchical M and μ

- "constraints" on hierarchies if $\frac{\mu_i}{\mu_j} \sim \frac{y_i}{y_j}$ then M either more or less hierarchical
- constraints on both angles

$$m_{\nu} \propto Y^{T} D_{M}^{-1} \mu D_{M}^{-1} Y = V_{L}^{*} D_{Y} V_{R}^{T} D_{M}^{-1} \Omega^{\dagger} D_{\mu} \Omega^{*} V_{R} D_{Y} V_{L}^{\dagger}$$

Hierarchical M and degenerate μ



Hierarchical *M* and μ

- "constraints" on hierarchies if $\frac{\mu_i}{\mu_j} \sim \frac{y_i}{y_j}$ then M either more or less hierarchical
- constraints on both angles

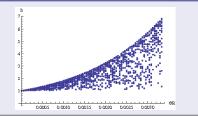
$$m_{\nu} \propto Y^{T} D_{M}^{-1} \mu D_{M}^{-1} Y = V_{L}^{*} D_{Y} V_{R}^{T} D_{M}^{-1} \Omega^{\dagger} D_{\mu} \Omega^{*} V_{R} D_{Y} V_{L}^{\dagger}$$

Hierarchical M and degenerate μ

 $y_1: y_2 = M_1: M_2 = 1:300$

 $\mu_1 = \mu_2$

h < 6 for any Ω and $\theta_R \ll \frac{y_1}{y_2}$ no need of fine-tuning



Hierarchical M and μ

- "constraints" on hierarchies if $\frac{\mu_i}{\mu_j} \sim \frac{y_i}{y_j}$ then M either more or less hierarchical
- constraints on both angles

no need of fine-tuning

Carla Biggio (MPI)

$$m_{\nu} \propto Y^{T} D_{M}^{-1} \mu D_{M}^{-1} Y = V_{L}^{*} D_{Y} V_{R}^{T} D_{M}^{-1} \Omega^{\dagger} D_{\mu} \Omega^{*} V_{R} D_{Y} V_{L}^{\dagger}$$

Hierarchical M and degenerate μ

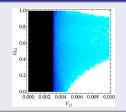
 $y_1: y_2 = M_1: M_2 = 1:300$

 $\mu_1 = \mu_2$

h < 6 for any Ω and $\theta_R \ll \frac{y_1}{y_2}$ no need of fine-tuning

Hierarchical M and μ

- "constraints" on hierarchies if $\frac{\mu_i}{\mu_j} \sim \frac{y_i}{y_j}$ then M either more or less hierarchical
- constraints on both angles



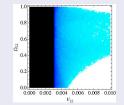
$$m_{\nu} \propto Y^{T} D_{M}^{-1} \mu D_{M}^{-1} Y = V_{L}^{*} D_{Y} V_{R}^{T} D_{M}^{-1} \Omega^{\dagger} D_{\mu} \Omega^{*} V_{R} D_{Y} V_{L}^{\dagger}$$

Hierarchical M and degenerate μ

 $y_1: y_2 = M_1: M_2 = 1:300$

 $\mu_1 = \mu_2$

h < 6 for any Ω and $\theta_R \ll \frac{y_1}{y_2}$ no need of fine-tuning



Hierarchical M and μ

- "constraints" on hierarchies if $\frac{\mu_i}{\mu_j} \sim \frac{y_i}{y_j}$ then M either more or less hierarchical
- constraints on both angles

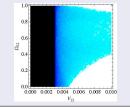
$$m_{\nu} \propto Y^{T} D_{M}^{-1} \mu D_{M}^{-1} Y = V_{L}^{*} D_{Y} V_{R}^{T} D_{M}^{-1} \Omega^{\dagger} D_{\mu} \Omega^{*} V_{R} D_{Y} V_{L}^{\dagger}$$

Hierarchical M and degenerate μ

 $y_1: y_2 = M_1: M_2 = 1:300$

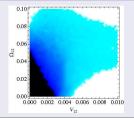
 $\mu_1 = \mu_2$

h < 6 for any Ω and $\theta_R \ll \frac{y_1}{y_2}$ no need of fine-tuning



Hierarchical M and μ

- "constraints" on hierarchies if $\frac{\mu_i}{\mu_j} \sim \frac{y_i}{y_j}$ then M either more or less hierarchical
- constraints on both angles



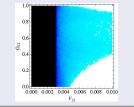
$$m_{\nu} \propto Y^{T} D_{M}^{-1} \mu D_{M}^{-1} Y = V_{L}^{*} D_{Y} V_{R}^{T} D_{M}^{-1} \Omega^{\dagger} D_{\mu} \Omega^{*} V_{R} D_{Y} V_{L}^{\dagger}$$

Hierarchical M and degenerate μ

 $y_1: y_2 = M_1: M_2 = 1:300$

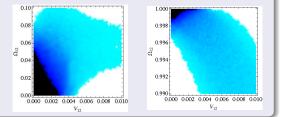
 $\mu_1 = \mu_2$

h < 6 for any Ω and $\theta_R \ll \frac{y_1}{y_2}$ no need of fine-tuning



Hierarchical M and μ

- "constraints" on hierarchies if $\frac{\mu_i}{\mu_j} \sim \frac{y_i}{y_j}$ then M either more or less hierarchical
- constraints on both angles

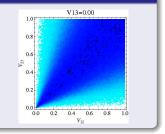


Hierarchical M and degenerate μ

$$y_1: y_2: y_3 = M_1: M_2: M_3 = 1:300: (300)^2$$

 $\mu_1 = \mu_2 = \mu_3$

h < 6 for any Ω and V_R as \rightarrow



Hierarchical M and μ

"constraints" on hierarchies
constraints on both Ω and V_R

EXAMPLE \rightarrow

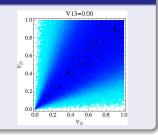
$$\begin{split} & \operatorname{hier}(\mu_i) \sim \operatorname{hier}(y_i) \\ & \operatorname{hier}(M_i) \sim \operatorname{hier}(\sqrt{y_i}) \\ & V_{13} \simeq 0 \\ & \Omega \sim \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{split}$$

Hierarchical M and degenerate μ

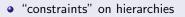
$$y_1: y_2: y_3 = M_1: M_2: M_3 = 1:300: (300)^2$$

 $\mu_1 = \mu_2 = \mu_3$

h < 6 for any Ω and V_R as \rightarrow

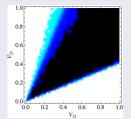


Hierarchical M and μ



• constraints on both Ω and V_R

$$\mathsf{EXAMPLE} \longrightarrow$$



$$\begin{aligned} &\operatorname{hier}(\mu_i) \sim \operatorname{hier}(y_i) \\ &\operatorname{hier}(M_i) \sim \operatorname{hier}(\sqrt{y_i}) \\ &V_{13} \simeq 0 \\ &\Omega \sim \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{aligned}$$

Introduction: fermion mass hierarchies

2 Neutrino mass hierarchies in the type I seesaw

3 Neutrino mass hierarchies in the type I double seesaw

4 Summary and conclusions

- Experimentally we know that the hierarchy of neutrino masses (at least the two heaviest) is much softer than for charged fermions: $m_3/m_2 < 6$
- If neutrino's Yukawa couplings are as hierarchical as other Yukawa couplings, Dirac masses are disfavoured because $h \gg 6$
- The seesaw mechanism offers a way to generate light neutrino masses and soft hierarchies, but the high energy parameters must respect certain constraints:
 - for random V_R large hierarchies are usually generated
 - hierarchical Majorana masses M_i , V_R "CKM-like" $\rightarrow h < 6$
 - degenerate M_i are disfavoured, cancellations are required

• In the double seesaw soft hierarchies are generated more naturally:

- hierarchical Dirac masses M_i and degenerate Majorana masses μ_i : h < 6 independently of Ω , constraints on V_R
- hierarchical Dirac and Majorana masses: h < 6 implies constraints on Ω and V_R and relations among the hierarchies of y_i , M_i , μ_i

- Experimentally we know that the hierarchy of neutrino masses (at least the two heaviest) is much softer than for charged fermions: $m_3/m_2 < 6$
- If neutrino's Yukawa couplings are as hierarchical as other Yukawa couplings, Dirac masses are disfavoured because $h \gg 6$
- The seesaw mechanism offers a way to generate light neutrino masses and soft hierarchies, but the high energy parameters must respect certain constraints:
 - for random V_R large hierarchies are usually generated.
 - hierarchical Majorana masses M_i , V_R "CKM-like" $\rightarrow h < 6$
 - degenerate M_i are disfavoured, cancellations are required

• In the double seesaw soft hierarchies are generated more naturally:

- hierarchical Dirac masses M_i and degenerate Majorana masses μ_i : h < 6 independently of Ω , constraints on V_R
- hierarchical Dirac and Majorana masses: h < 6 implies constraints on Ω and V_R and relations among the hierarchies of y_i , M_i , μ_i

- Experimentally we know that the hierarchy of neutrino masses (at least the two heaviest) is much softer than for charged fermions: $m_3/m_2 < 6$
- If neutrino's Yukawa couplings are as hierarchical as other Yukawa couplings, Dirac masses are disfavoured because $h \gg 6$
- The seesaw mechanism offers a way to generate light neutrino masses and soft hierarchies, but the high energy parameters must respect certain constraints:
 - for random V_R large hierarchies are usually generated
 - hierarchical Majorana masses M_i , V_R "CKM-like" $\rightarrow h < 6$
 - degenerate M_i are disfavoured, cancellations are required

• In the double seesaw soft hierarchies are generated more naturally:

- hierarchical Dirac masses M_l and degenerate Majorana masses μ_l : h < 6 independently of Ω , constraints on V_R
- hierarchical Dirac and Majorana masses: h < 6 implies constraints on Ω and V_R and relations among the hierarchies of y_i , M_i , μ_i

- Experimentally we know that the hierarchy of neutrino masses (at least the two heaviest) is much softer than for charged fermions: $m_3/m_2 < 6$
- If neutrino's Yukawa couplings are as hierarchical as other Yukawa couplings, Dirac masses are disfavoured because $h \gg 6$
- The seesaw mechanism offers a way to generate light neutrino masses and soft hierarchies, but the high energy parameters must respect certain constraints:
 - for random V_R large hierarchies are usually generated
 - hierarchical Majorana masses M_i , V_R "CKM-like" $\rightarrow h < 6$
 - degenerate M_i are disfavoured, cancellations are required

• In the double seesaw soft hierarchies are generated more naturally:

- hierarchical Dirac masses M_i and degenerate Majorana masses μ_i : h < 6 independently of Ω , constraints on V_R
- hierarchical Dirac and Majorana masses: h < 6 implies constraints on Ω and V_R and relations among the hierarchies of y_i , M_i , μ_i

- Experimentally we know that the hierarchy of neutrino masses (at least the two heaviest) is much softer than for charged fermions: $m_3/m_2 < 6$
- If neutrino's Yukawa couplings are as hierarchical as other Yukawa couplings, Dirac masses are disfavoured because $h \gg 6$
- The seesaw mechanism offers a way to generate light neutrino masses and soft hierarchies, but the high energy parameters must respect certain constraints:
 - for random V_R large hierarchies are usually generated
 - hierarchical Majorana masses M_i , V_R "CKM-like" $\rightarrow h < 6$
 - degenerate M_i are disfavoured, cancellations are required

• In the double seesaw soft hierarchies are generated more naturally:

- hierarchical Dirac masses M_i and degenerate Majorana masses μ_i : h < 6 independently of Ω , constraints on V_R
- hierarchical Dirac and Majorana masses: h < 6 implies constraints on Ω and V_R and relations among the hierarchies of y_i , M_i , μ_i

- Experimentally we know that the hierarchy of neutrino masses (at least the two heaviest) is much softer than for charged fermions: $m_3/m_2 < 6$
- If neutrino's Yukawa couplings are as hierarchical as other Yukawa couplings, Dirac masses are disfavoured because $h \gg 6$
- The seesaw mechanism offers a way to generate light neutrino masses and soft hierarchies, but the high energy parameters must respect certain constraints:
 - for random V_R large hierarchies are usually generated
 - hierarchical Majorana masses M_i , V_R "CKM-like" $\rightarrow h < 6$
 - degenerate M_i are disfavoured, cancellations are required
- In the double seesaw soft hierarchies are generated more naturally:
 - hierarchical Dirac masses M_i and degenerate Majorana masses μ_i : h < 6 independently of Ω , constraints on V_R
 - hierarchical Dirac and Majorana masses: h < 6 implies constraints on Ω and V_R and relations among the hierarchies of y_i , M_i , μ_i

- Experimentally we know that the hierarchy of neutrino masses (at least the two heaviest) is much softer than for charged fermions: $m_3/m_2 < 6$
- If neutrino's Yukawa couplings are as hierarchical as other Yukawa couplings, Dirac masses are disfavoured because $h \gg 6$
- The seesaw mechanism offers a way to generate light neutrino masses and soft hierarchies, but the high energy parameters must respect certain constraints:
 - for random V_R large hierarchies are usually generated
 - hierarchical Majorana masses M_i , V_R "CKM-like" $\rightarrow h < 6$
 - degenerate M_i are disfavoured, cancellations are required
- In the double seesaw soft hierarchies are generated more naturally:
 - hierarchical Dirac masses M_i and degenerate Majorana masses μ_i : h < 6 independently of Ω , constraints on V_R
 - hierarchical Dirac and Majorana masses: h < 6 implies constraints on Ω and V_R and relations among the hierarchies of y_i , M_i , μ_i