Relic density at one-loop with gauge boson pair production

CHALONS Guillaume

in collaboration with N. Baro, F.Boudjema, Sun Hao Laboratoire d'Annecy-le-Vieux de Physique THéorique

January 26th 2010

RELIC DENSITY OF DARK MATTER

- WMAP : $0.098 < \Omega_{DM} h^2 < 0.114$ (10% precision)
- PLANCK : 2% precision

RELIC DENSITY OF DARK MATTER

- WMAP : $0.098 < \Omega_{DM} h^2 < 0.114$ (10% precision)
- PLANCK : 2% precision

POSSIBLE CANDIDATE :NEUTRALINO (SUPERSYMMETRY)

- At tree-level : $m_h < m_Z$ but we never saw the Higgs
- At one loop : the Higgs receives huge corrections
- More generally SUSY processes are known to give large radiative corrections.
- Models for the relic abundance valid at tree-level can be excluded at one-loop and vice-versa.

RELIC DENSITY OF DARK MATTER

- WMAP : $0.098 < \Omega_{DM} h^2 < 0.114$ (10% precision)
- PLANCK : 2% precision

POSSIBLE CANDIDATE :NEUTRALINO (SUPERSYMMETRY)

- At tree-level : $m_h < m_Z$ but we never saw the Higgs
- At one loop : the Higgs receives huge corrections
- More generally SUSY processes are known to give large radiative corrections.
- Models for the relic abundance valid at tree-level can be excluded at one-loop and vice-versa.

⇒ RADIATIVE CORRECTIONS ARE IMPORTANT

RELIC DENSITY IN STANDARD SCENARIO

$$\Omega_{DM} h^2 \simeq rac{3 imes 10^{-27} cm^3 s^{-1}}{\langle \sigma(\chi\chi o SM) v
angle}$$

RELIC DENSITY IN STANDARD SCENARIO

$$\Omega_{DM} h^2 \simeq rac{3 imes 10^{-27} cm^3 s^{-1}}{\langle \sigma(\chi\chi o SM) v
angle}$$

PRECISION

- Need to know precisely $\sigma \Rightarrow$ one-loop calculations
- Parameters reconstruction at the LHC/LC
- Check the underlying cosmological scenario

SOME PREVIOUS WORK AT 1-L IN SUSY

EW + QCD corrections

- $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \gamma \gamma, Z \gamma, gg$: Boudjema,Semenov,Temes, *Phys. Rev.* D72, 055024 (2005), hep-ph/0507127
- $ilde{\chi}_1^0 ilde{\chi}_1^0 o ZZ, W^+W^-$: Baro,Boudjema,Semenov, Phys. Lett. B660 (2008) 550, hep-ph/0710.1821
- $ilde{\chi}^0_1 ilde{\chi}^0_1 o au^+ au^-, bar{b}$: Baro,Boudjema,Semenov, Phys. Lett B660 (2008) 550, hep-ph/0710.1821
- Co-annihilation with $ilde{ au}$: Baro,Boudjema,Semenov, Phys. Lett B660 (2008) 550, hep-ph/0710.1821

QCD corrections

- Co-annihilation with \tilde{t} Freitas Phys. Lett. B652 (2007) 280
- Annihilation into massive quarks Hermann, Klasen, Kovarik Phys. Rev. D79 (2009), hep-ph/0901.0481

A coherent renormalisation scheme and a choice of input parameters

A coherent renormalisation scheme and a choice of input parameters

To generate counter-terms, for SUSY gigantic task

A coherent renormalisation scheme and a choice of input parameters

To generate counter-terms, for SUSY gigantic task

Loop Integrals to handle Gram determinant when $v{\rightarrow}0$

A coherent renormalisation scheme and a choice of input parameters

To generate counter-terms, for SUSY gigantic task

Loop Integrals to handle Gram determinant when $v{\rightarrow}0$

To deal with IR and collinear divergencies \rightarrow include bremsstrahlung.

A coherent renormalisation scheme and a choice of input parameters

To generate counter-terms, for SUSY gigantic task

Loop Integrals to handle Gram determinant when $v{\rightarrow}0$

To deal with IR and collinear divergencies \rightarrow include bremsstrahlung.

 \Rightarrow NEED FOR AUTOMATION

- A code for the calculation of loop diagrams in the MSSM with application to collider physics, astrophysics and cosmology.
- Evaluation of one-loop diagrams including a complete and coherent renormalisation of each sector of the MSSM with an OS scheme.
- Modularity between different renormalisation schemes.

OVERVIEW

Mass matrix

$$Y = \begin{pmatrix} M_1 & 0 & -c_\beta s_W M_Z & s_\beta s_W M_Z \\ 0 & M_2 & c_\beta c_W M_Z & -s_\beta c_W M_Z \\ -c_\beta s_W M_Z & c_\beta c_W M_Z & 0 & -\mu \\ s_\beta s_W M_Z & -s_\beta c_W M_Z & -\mu & 0 \end{pmatrix}, X = \begin{pmatrix} M_2 & \sqrt{2} s_\beta M_W \\ \sqrt{2} c_\beta M_W & \mu \end{pmatrix}$$

Diagonalisation and Decomposition

$$\hookrightarrow \quad \widetilde{\chi}_1^0 = N_{11}\tilde{B} + N_{12}\tilde{W} + N_{13}\tilde{H}_1^0 + N_{14}\tilde{H}_2^0$$

- At one-loop : 3 counterterms $(\delta M_1, \delta M_2, \delta \mu) \rightarrow 3$ renormalisation conditions
- Our choice : ON-SHELL scheme with 3 masses $m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_1^+}, m_{\tilde{\chi}_2^+}$
- Other schemes/definitions possible
- Remaining counter-terms are determined in the gauge and higgs sector($\alpha(0), M_W, M_Z, \delta t_{\beta}$)

 t_{β} doesn't represent a physical observable \rightarrow several definitions :

 t_{β} doesn't represent a physical observable \rightarrow several definitions :

 \overline{DR} : δt_{β} is a pure divergence

 t_{β} doesn't represent a physical observable \rightarrow several definitions :

 \overline{DR} : δt_{β} is a pure divergence

 $DCPR: \delta t_{eta}$ is defined with $\hat{\Sigma}_{A^0Z^0}(m_A^2)=0$

 t_{β} doesn't represent a physical observable \rightarrow several definitions :

 \overline{DR} : δt_{β} is a pure divergence

DCPR: δt_{β} is defined with $\hat{\Sigma}_{A^0Z^0}(m_A^2) = 0$

MH: δt_{β} is defined from the measure of the mass m_H

 t_{β} doesn't represent a physical observable \rightarrow several definitions :

 \overline{DR} : δt_{β} is a pure divergence

DCPR: δt_{β} is defined with $\hat{\Sigma}_{A^0Z^0}(m_A^2) = 0$

MH: δt_{β} is defined from the measure of the mass m_H

 $A^0 \tau \tau$: δt_β is defined from the decay $A^0 \to \tau^+ \tau^-$ (vertex $\propto m_\tau t_\beta$)

 t_{β} doesn't represent a physical observable \rightarrow several definitions :

 \overline{DR} : δt_{β} is a pure divergence

DCPR: δt_{β} is defined with $\hat{\Sigma}_{A^0Z^0}(m_A^2) = 0$

MH: δt_{β} is defined from the measure of the mass m_H

 $A^0 au au$: δt_β is defined from the decay $A^0 \to au^+ au^-$ (vertex $\propto m_\tau t_\beta$)

Only
$$MH, A^0 \tau \tau$$
 are gauge independent

PARTICLE PHYSICS (SloopS)

GAUGE BOSON PRODUCTION

- SU(2)_L type couplings
- Channels contributions > 5% to Ωh² at TL corrected at one-loop
- Coannihilation channels

PARTICLE PHYSICS (SloopS)

GAUGE BOSON PRODUCTION

- SU(2)_L type couplings
- Channels contributions > 5% to Ωh² at TL corrected at one-loop
- Coannihilation channels

 $ilde{\chi}_1^0 ilde{\chi}_1^\pm W^\pm$, $ilde{\chi}_1^0 ilde{\chi}_2^0 Z^0$ vertices

1-loop corrections to $\sigma_0 v = a_0 + b_0 v^2$

Also light $q\bar{q}'$ production

PARTICLE PHYSICS (SloopS)

GAUGE BOSON PRODUCTION

- SU(2)_L type couplings
- Channels contributions > 5% to Ωh² at TL corrected at one-loop
- Coannihilation channels

 $ilde{\chi}_1^0 ilde{\chi}_1^\pm W^\pm$, $ilde{\chi}_1^0 ilde{\chi}_2^0 Z^0$ vertices

1-loop corrections to $\sigma_0 v = a_0 + b_0 v^2$

Also light $q\bar{q}'$ production

COSMOLOGY (MicrOmegas)

THERMAL RELIC DENSITY

Solve the Boltzmann equation

•
$$\Omega h^2 \simeq \left(\frac{10}{\sqrt{g_*(x_F)}} \frac{x_F}{24}\right) \frac{0.237 \times 10^{-26} \text{ cm}^3.\text{s}^{-1}}{x_F}$$

PARTICLE PHYSICS (SloopS)

GAUGE BOSON PRODUCTION

- SU(2)_L type couplings
- Channels contributions > 5% to Ωh² at TL corrected at one-loop
- Coannihilation channels

 $ilde{\chi}_1^0 ilde{\chi}_1^\pm W^\pm$, $ilde{\chi}_1^0 ilde{\chi}_2^0 Z^0$ vertices

1-loop corrections to $\sigma_0 v = a_0 + b_0 v^2$

Also light $q\bar{q}'$ production

COSMOLOGY (MicrOmegas)

THERMAL RELIC DENSITY

Solve the Boltzmann equation

•
$$\Omega h^2 \simeq \left(\frac{10}{\sqrt{g_*(x_F)}} \frac{x_F}{24}\right) \frac{0.237 \times 10^{-26} cm^3 . s^{-1}}{x_F J}$$

$$J = \int_{x_F}^{\infty} \langle \sigma \mathbf{v} \rangle_{eff} \, dx / x^2$$

$$\langle \sigma \mathbf{v} \rangle_{eff} = \sum_{ij} \frac{g_{i,eff}g_{j,eff}}{g_{eff}^2} \langle \sigma_{ij} \mathbf{v}_{ij} \rangle$$

$$g_{j,eff} = \frac{g_1}{g_{\tilde{\chi}_j^+}} \left(1 + \frac{\delta m}{m_1}\right)^{\frac{3}{2}} e^{-x \frac{\delta m}{m_1}}$$

Parameter	M_1	M_2	μ	t_{β}	M_3	$M_{\tilde{L},\tilde{Q}}$	Ai	M_{A^0}
Value	110	134.5	-245	10	600	600	0	600
		$\tilde{\chi}_{1}^{0} = 0.9$	94 <i>Ã</i> – 0	.20 <i>Ŵ</i> ·	— 0.27 <i>Ĥ</i>	$\tilde{H}_{1}^{0} - 0.10$	\tilde{H}_2^0	

		Tree-Level
$\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow W^{+}W^{-}$ [44%]	а	+0.81
· · ·	b	+1.219
$\tilde{\chi}_1^0 \tilde{\chi}_1^+ \rightarrow u \bar{d} / c \bar{s} [8\%]$	а	+15.61
	b	-5.81
$\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{+} \rightarrow Z^{0}W^{+}$ [5%]	а	+8.26
	b	+1.42
$\tilde{\chi}_{1}^{0}\tilde{\chi}_{2}^{0} \rightarrow W^{+}W^{-}$ [5%]	а	+17.81
	b	+11.86
Ωh^2		0.108

•
$$m_{\tilde{\chi}^0_1} = 107 \text{ GeV}$$

• $\delta(m_{\tilde{\chi}^+_1} - m_{\tilde{\chi}^0_1}) = 18 \text{ GeV}$

•
$$\sigma v^2 = a + bv^2$$
 works well

• Annihilations driven by the s-wave coefficient

MIXED-BINO NEUTRALINO

Parameter	M_1	<i>M</i> ₂	μ	t_{eta}	M_3	$M_{\tilde{L},\tilde{Q}}$	A_i	M_{A^0}		
Value	110	134.5	-245	10	600	600	0	600		
${ ilde \chi}_1^0 = 0.94 ilde B - 0.20 ilde {\mathcal W} - 0.27 ilde H_1^0 - 0.10 ilde H_2^0$										

- Bulk of corrections to the s-wave coefficient
- Large δt_{β} scheme dependence
- Careful treatment of hard radiation during integration of photon momenta → Internal W boson ON-SHELL

• QCD corrections to $u\bar{d} \simeq 2.5$ %

Parameter	M_1	M_2	μ	t_{β}	M_3	$M_{\tilde{L},\tilde{Q}}$	Ai	M_{A^0}		
Value	400	350	-250	4	1000	650	0	800		
$ ilde{\chi}^0_1 = 0.11 ilde{B} - 0.31 ilde{W} - 0.70 ilde{H}^0_1 - 0.63 ilde{H}^0_2$										

		Tree
$\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow W^{+}W^{-}$ [26%]	а	+11.84
	b	+4.17
$ ilde{\chi}_1^0 ilde{\chi}_1^+ ightarrow u ar{d}$ [12%]	а	+15.28
	b	-5.31
$\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow Z^0 Z^0$ [9%]	а	+4.28
	b	+1.83
$\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{+} \rightarrow Z^{0}W^{+}$ [6%]	а	+6.99
	b	-0.51
$\Omega_{\chi} h^2$		0.00931

•
$$m_{\tilde{\chi}_1^0} \simeq m_{\tilde{\chi}_1^+} \simeq |\mu|$$

•
$$m_{\tilde{\chi}_1^0} = 234 \text{ GeV}$$

• $\delta(m_{\tilde{\chi}_1^+} - m_{\tilde{\chi}_1^0}) = 9 \text{ GeV}$

• Annihilations driven by the s-wave coefficient and too efficient because of strong $\tilde{\chi}_1^0 \tilde{\chi}_1^\pm W^\pm$, $\tilde{\chi}_1^0 \tilde{\chi}_2^0 Z^0$ vertices.

- Bulk of corrections to the s-wave coefficient
- Small δt_β scheme dependence
- QCD corrections to $u\bar{d} \simeq 3 \%$
- Bump = \$\tilde{\chi_1}^{\pm}\$ threshold in boxes, not present at Tree-Level

Parameter	M_1	M_2	μ	t_{β}	M_3	Μ _ũ	M _ẽ ,	$M_{\tilde{u}_R,\tilde{e}_R}$	A_i	M_{A^0}
Value	550	210	-600	30	1200	387	360	800	0	700
$ ilde{\chi}^0_1 = 0.005 ilde{B} - 0.99 ilde{W} - 0.15 ilde{H}^0_1 - 0.05 ilde{H}^0_2$										

		Tree
$\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow W^{+}W^{-}$ [13%]	а	+161.8
	Ь	+53.52
$\tilde{\chi}_1^+ \tilde{\chi}_1^+ \rightarrow W^+ W^+$ [12%]	а	+80.75
	Ь	+26.83
${ ilde \chi}_1^0 { ilde \chi}_1^+ o Z^0 W^+$ [12%]	а	+37.50
	Ь	+10.15
$\tilde{\chi}_1^0 \tilde{\chi}_1^+ \rightarrow u \bar{d}$ [7%]	а	+24.44
	Ь	-12.62
$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-} \rightarrow Z^{0}Z^{0}$ [7%]	а	+47.08
	Ь	+17.71
$\tilde{\chi}_1^+ \tilde{\chi}_1^- \to W^+ W^-$ [7%]	а	+46.49
	Ь	+14.01
$\Omega_{\chi} h^2$		0.00215

- $m_{\tilde{\chi}_1^0} = 206.6 \text{ GeV}$ • $\delta(m_{\tilde{\chi}_1^+} - m_{\tilde{\chi}_1^0}) = 0.05 \text{ GeV}$
- $m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_1^\pm}$ almost degenerate
- Coannihilation very important
- Degeneracy between processes $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow W^+ W^-$ and $\tilde{\chi}_1^+ \tilde{\chi}_1^+ \rightarrow W^+ W^+$
- Relic density too low → non-thermal scenarios
- Claim that a wino could explain positron excess (PAMELA)

LIGHT-WINO NEUTRALINO

Parameter	M_1	M_2	μ	t_{β}	M ₃	Μũι	M _ẽ ,	$M_{\tilde{u}_R,\tilde{e}_R}$	Ai	M_{A^0}
Value	550	210	-600	30	1200	387	360	800	0	700
${ ilde \chi}_1^0=0.005 { ilde B}-0.99 { ilde W}-0.15 { ilde H}_1^0-0.05 { ilde H}_2^0$										

- At 1-L new feature appear for v → 0 : Coulomb effect
- Possible to capture its one-loop manifestation
- Degeneracy lifted between processes
- Large corrections
- Almost no δt_{β} scheme dependence
- Strong cancellations between QCD/EW corrections

- Complete renormalisation of the MSSM and modularity between different schemes
- Investigation of scenarios where gauge boson pair production dominates
- A lot of processes to correct to have a full $\mathcal{O}(\alpha)$ relic density
- For light-wino case no need for resummation
- Future study of a scenario with a heavy wino \rightarrow QED+EW Sommerfeld enhancement
- Influence of the gaugino scheme
- To be published in Phys. Rev. D