

Effective Operators in the MSSM Guillaume Drieu La Rochelle, LAPTH

MSSM Part I : a promising candidate

A powerful but insufficient Standard Model

MSSM Part I : a promising candidate

- \triangleright A powerful but insufficient Standard Model No Unification
 - Arbitrariness of the parameters Running of the coupling constants

RPP Lyon 25/01/10

A powerful but insufficient Standard Model

No Unification

• Arbitrariness of the parameters Running of the coupling constants

RPP Lyon 25/01/10

Quadratic loop divergences
 Hierarchy
 Naturalness issue

- A powerful but insufficient Standard Model
 - Arbitrariness of the parameters Running of the coupling constants
 - Quadratic loop divergences
 Naturalness issue
- The SUSY solution

RPP Lyon 25/01/10

No Unification

Hierarchy

MSSM Part I : a promising candidate

- A powerful but insufficient Standard Model
 - Arbitrariness of the parameters Running of the coupling constants
 - Quadratic loop divergences
 Naturalness issue
- The SUSY solution

- Free of quadratic divergences
- Unification of the coupling constants
- Minimal

RPP Lyon 25/01/10

Most natural extension

MSSM

Hierarchy

No Unification

MSSM Part II : The desillusion

- Betrayed by the experiments
 - An elusive Higgs

MSSM Part II : The desillusion

Betrayed by the experiments

• An elusive Higgs

$$M_{h,H}^{2} = \frac{1}{2} \left[M_{A_{0}}^{2} + M_{Z}^{2} \pm \sqrt{(M_{A_{0}}^{2} + M_{Z}^{2})^{2} - 4M_{A_{0}}^{2}M_{Z}^{2}c_{2\beta}^{2}} \right]$$

$$M_{h}^{2} + M_{H}^{2} = M_{A_{0}}^{2} + M_{Z}^{2}$$

$$M_{h} < M_{Z}$$

MSSM Part II : The desillusion

Betrayed by the experiments

• An elusive Higgs

$$M_{h,H}^{2} = \frac{1}{2} \left[M_{A_{0}}^{2} + M_{Z}^{2} \pm \sqrt{(M_{A_{0}}^{2} + M_{Z}^{2})^{2} - 4M_{A_{0}}^{2}M_{Z}^{2}c_{2\beta}^{2}} \right]$$

$$M_{h}^{2} + M_{H}^{2} = M_{A_{0}}^{2} + M_{Z}^{2}$$
Radiative Corrections, but ...
$$M_{h} > 114.4 \text{ GeV}$$

?!

MSSM Part II : The desillusion

Betrayed by the experiments

• An elusive Higgs

$$M_{h,H}^{2} = \frac{1}{2} \left[M_{A_{0}}^{2} + M_{Z}^{2} \pm \sqrt{(M_{A_{0}}^{2} + M_{Z}^{2})^{2} - 4M_{A_{0}}^{2}M_{Z}^{2}c_{2\beta}^{2}} \right]$$
$$M_{h}^{2} + M_{H}^{2} = M_{A_{0}}^{2} + M_{Z}^{2}$$

Radiative Corrections, but ...

- The fine-tuning issue
 - High t_{eta}
 - High stop mass for Radiative Corrections
- Collider search Narrow more and more the susy scenario

$$M_h < M_Z$$
 ?!
 $M_h > 114.4 \text{ GeV}$

MSSM Part II : The desillusion

Betrayed by the experiments

• An elusive Higgs

$$M_{h,H}^{2} = \frac{1}{2} \left[M_{A_{0}}^{2} + M_{Z}^{2} \pm \sqrt{(M_{A_{0}}^{2} + M_{Z}^{2})^{2} - 4M_{A_{0}}^{2}M_{Z}^{2}c_{2\beta}^{2}} \right]$$
$$M_{h}^{2} + M_{H}^{2} = M_{A_{0}}^{2} + M_{Z}^{2}$$

Radiative Corrections, but ...

- The fine-tuning issue
 - High t_{eta}
 - High stop mass for Radiative Corrections
- Collider search Narrow more and more the susy scenario
- Far from complete
 - Mechanism for the susy breaking
 - The mu problem
 - The little hierarchy problem

$$M_h < M_Z$$
 ?!
 $M_h > 114.4 \text{ GeV}$

Effective Field Theory

• Why? Include high energy physics contribution without the explicit knowing of that high energy theory.

○ How? → Global theory at low energy ~ Low energy lagrangian
 + Effective Operators

MSSM with effective operators Guillaume Drieu La Rochelle

Effective Field Theory

• Why? Include high energy physics contribution without the explicit knowing of that high energy theory.

• How? \implies Global theory at low energy \sim Low energy lagrangian

+ Effective Operators

EFT How-To

- 1. Choose a scale high/low energy.
- 2. Choose a field theory for low energy physics (renormalizable).
- 3. Add some effective operators.

(M,v,f) scales of effective theory

- 4. Infer the value of c_k :
 - from measurements
 - knowing of the underlying theory.

MSSM with effective operators Guillaume Drieu La Rochelle

Effective Field Theory

• Why? Include high energy physics contribution without the explicit knowing of that high energy theory.

• How? \implies Global theory at low energy \sim Low energy lagrangian + Effective Operators

Supersymmetric EFT

Rescuing the MSSM : New physics at the TeV scale

Done in many Beyond the MSSM models

NMSSM, phenomenological MSSM, etc..

Supersymmetric EFT

Rescuing the MSSM : New physics at the TeV scale

- Done in many Beyond the MSSM models NMSSM, phenomenological MSSM, etc..
- Model independant approach
 - Include <u>all effective operators</u> allowed by the symmetries

See later

Supersymmetric EFT

Rescuing the MSSM : New physics at the TeV scale

- Done in many Beyond the MSSM models
 - NMSSM, phenomenological MSSM, etc..
- Model independant approach
 - Include <u>all effective operators</u> allowed by the symmetries
 - Equivalent to taking a specific BMSSM model
 & integrating out heavy particles
 - Infer the consequences of high energy physics

Gauge Susy ...

See later

Supersymmetric EFT

Rescuing the MSSM : New physics at the TeV scale

- Done in many Beyond the MSSM models
 - NMSSM, phenomenological MSSM, etc..
- Model independant approach
 - Include <u>all effective operators</u> allowed by the symmetries
 - Equivalent to taking a specific BMSSM model
 & integrating out heavy particles
 - Infer the consequences of high energy physics

Gauge Susy ...

See later

- Which corrections to expect
- Each effective operator acts on several observables → Correlations

Choosing our Effective Operators

Constraints

•
$$f^4 \frac{c_k}{M^{d_k}} \mathcal{O}_k\left(\frac{\phi}{v}\right)$$
 $c_k M^{d'_k} \mathcal{O}_k(\phi)$ $M \sim 10 \text{ Tev}$

Recap : The MSSM has only dimension up to 4 operators.

Constraints

•
$$f^4 \frac{c_k}{M^{d_k}} \mathcal{O}_k\left(\frac{\phi}{v}\right)$$
 $c_k M^{d'_k} \mathcal{O}_k(\phi)$ $M \sim 10 \text{ Tev}$

Recap : The MSSM has only dimension up to 4 operators.

Susy/Gauge Invariance

Superfield formulation

Focus on the Higgs sector (possible extension to other sectors)

Constraints

• $f^4 \frac{c_k}{M^{d_k}} \mathcal{O}_k\left(\frac{\phi}{v}\right)$ $c_k M^{d'_k} \mathcal{O}_k(\phi)$ $M \sim 10 \text{ Tev}$

Recap : The MSSM has only dimension up to 4 operators.

Susy/Gauge Invariance

Superfield formulation

- Focus on the Higgs sector (possible extension to other sectors)
- Effective Operators

$$\mathcal{L} = \int d^2\theta \, d^2\overline{\theta} \, K + \int d^2\theta \, W + \int d^2\overline{\theta} \, \overline{W}$$

Constraints

• $f^4 \frac{c_k}{M^{d_k}} \mathcal{O}_k\left(\frac{\phi}{v}\right)$ $c_k M^{d'_k} \mathcal{O}_k(\phi)$ $M \sim 10 \text{ Tev}$

Recap : The MSSM has only dimension up to 4 operators.

Susy/Gauge Invariance

Superfield formulation

- Focus on the Higgs sector (possible extension to other sectors)
- Effective Operators

$$\mathcal{L} = \int d^2\theta \, d^2\overline{\theta} \, K \, + \, \int d^2\theta \, W \, + \, \int d^2\overline{\theta} \, \overline{W}$$
Kähler Potential
Standard
Effectif
Effectif
Effectif

Constraints

• $f^4 \frac{c_k}{M^{d_k}} \mathcal{O}_k\left(\frac{\phi}{v}\right)$ $c_k M^{d'_k} \mathcal{O}_k(\phi)$ $M \sim 10 \text{ Tev}$

Recap : The MSSM has only dimension up to 4 operators.

Susy/Gauge Invariance

Superfield formulation

- Focus on the Higgs sector (possible extension to other sectors)
- Effective Operators

$$\mathcal{L} = \int d^{2}\theta \, d^{2}\overline{\theta} \, K \, + \, \int d^{2}\theta \, W \, + \, \int d^{2}\overline{\theta} \, \overline{W}$$
Kähler Potential
Standard
$$H_{1}^{\dagger}e^{2gV_{1}}H_{1} + H_{2}^{\dagger}e^{2gV_{2}}H_{2}$$
Effectif
$$\frac{\mathbf{a}_{1}}{M^{2}}(H_{1}^{\dagger}e^{2gV_{1}}H_{1})^{2}$$

$$+ \frac{\mathbf{a}_{2}}{M^{2}}(H_{2}^{\dagger}e^{2gV_{2}}H_{2})^{2} \quad \text{pimension 6}$$
Effectif
$$\frac{\zeta_{1}}{M}(H_{1}.H_{2})^{2} + \dots 5$$

$$pimension 5$$

Constraints

• $f^4 \frac{c_k}{M^{d_k}} \mathcal{O}_k\left(\frac{\phi}{v}\right)$ $c_k M^{d'_k} \mathcal{O}_k(\phi)$ $M \sim 10 \text{ Tev}$

Recap : The MSSM has only dimension up to 4 operators.

Susy/Gauge Invariance

Superfield formulation

- Focus on the Higgs sector (possible extension to other sectors)
- Effective Operators

$$\mathcal{L} = \int d^{2}\theta \, d^{2}\overline{\theta} \, K \, + \, \int d^{2}\theta \, W \, + \, \int d^{2}\overline{\theta} \, \overline{W}$$
Kähler Potential
Standard
$$H_{1}^{\dagger}e^{2gV_{1}}H_{1} + H_{2}^{\dagger}e^{2gV_{2}}H_{2}$$
Standard
$$\mu H_{1}.H_{2} + \text{Yukawa}$$
Effectif
$$\frac{\mathbf{a}_{1}}{M^{2}} (H_{1}^{\dagger}e^{2gV_{1}}H_{1})^{2}$$

$$+ \frac{\mathbf{a}_{2}}{M^{2}} (H_{2}^{\dagger}e^{2gV_{2}}H_{2})^{2} + \dots$$

Base of Effective Operators

Dimension 5

Dimension 6

 $\frac{\zeta_1}{M}(H_1.H_2)^2$

$$\frac{\mathbf{a}_{i}}{M^{2}} (H_{i}^{\dagger} e^{2gV_{i}} H_{i})^{2}$$

$$\frac{\mathbf{a}_{3}}{M^{2}} (H_{1}^{\dagger} e^{2gV_{1}} H_{1}) (H_{2}^{\dagger} e^{2gV_{2}} H_{2})$$

$$\frac{\mathbf{a}_{4}}{M^{2}} (H_{1} \cdot H_{2}) (H_{1}^{\dagger} \cdot H_{2}^{\dagger})$$

$$\frac{\mathbf{a}_{5}}{M^{2}} (H_{1}^{\dagger} e^{2gV_{1}} H_{1}) (H_{1} \cdot H_{2}) + \text{ h.c.}$$

$$\frac{\mathbf{a}_{6}}{M^{2}} (H_{2}^{\dagger} e^{2gV_{2}} H_{2}) (H_{1} \cdot H_{2}) + \text{ h.c.}$$

Base of Effective Operators

Dimension 5

Dimension 6

Base of Effective Operators

Dimension 5

Dimension 6

$$\begin{aligned} \frac{\mathbf{a}_{i}}{M^{2}} \left(H_{i}^{\dagger}e^{2gV_{i}}H_{i}\right)^{2} & \text{Action on standard} \\ \frac{\mathbf{a}_{3}}{M^{2}} \left(H_{1}^{\dagger}e^{2gV_{1}}H_{1}\right)\left(H_{2}^{\dagger}e^{2gV_{2}}H_{2}\right) \\ & \frac{\mathbf{a}_{4}}{M^{2}} \left(H_{1}.H_{2}\right)\left(H_{1}^{\dagger}.H_{2}^{\dagger}\right) & \text{Higgs/Neutralinos} \\ \frac{\mathbf{a}_{5}}{M^{2}} \left(H_{1}^{\dagger}e^{2gV_{1}}H_{1}\right)\left(H_{1}.H_{2}\right) + \text{ h.c.} \end{aligned}$$

MSSM with effective operators Guillaume Drieu La Rochelle

Susy Breaking Terms

> Constraints

$M \sim 10 { m Tev}$

Susy/Gauge Invariance Spurion formulation

Focus on the Higgs sector

MSSM with effective operators Guillaume Drieu La Rochelle

Susy Breaking Terms

Constraints

 $= f^4 \frac{c_k}{M^{d_k}} \mathcal{O}_k\left(\frac{\phi}{v}\right) \qquad c_k M^{d'_k} \mathcal{O}_k(\phi)$

$M \sim 10 { m Tev}$

Susy/Gauge Invariance Spurion formulation

Focus on the Higgs sector

➢ Spurions

 $= \mathbf{a}_{10} + a_{11}m_0\theta^2 + \overline{a}_{11}m_0\overline{\theta}^2 + a_{12}m_0\theta^2\overline{\theta}^2$

 $m_0 \sim 1 \text{ TeV}$

• $\zeta_1 = \zeta_{10} + \zeta_{10} m_0 \theta^2$

MSSM with effective operators Guillaume Drieu La Rochelle

Susy Breaking Terms

Constraints • $f^4 \frac{c_k}{M^{d_k}} \mathcal{O}_k\left(\frac{\phi}{v}\right)$ $c_k M^{d'_k} \mathcal{O}_k(\phi)$ $M \sim 10 \text{ Tev}$ Susy/Gauge Invariance Spurion formulation Focus on the Higgs sector Spurions $\mathbf{a}_1 = a_{10} + a_{11}m_0\theta^2 + \overline{a}_{11}m_0\overline{\theta}^2 + a_{12}m_0\theta^2\overline{\theta}^2$ $m_0 \sim 1 \text{ TeV}$ • $\zeta_1 = \zeta_{10} + \zeta_{10} m_0 \theta^2$ Example $\int d^2\theta (1 + Bm_0\theta^2) \mu H_1 H_2 = \int d^2\theta \mu H_1 H_2 + B\mu m_0 h_1 h_2$ Spurion Standard Operator

MSSM with effective operators Guillaume Drieu La Rochelle

Susy Breaking Terms

Constraints • $f^4 \frac{c_k}{M^{d_k}} \mathcal{O}_k\left(\frac{\phi}{v}\right)$ $c_k M^{d'_k} \mathcal{O}_k(\phi)$ $M \sim 10 \text{ Tev}$ Susy/Gauge Invariance Spurion formulation Focus on the Higgs sector Spurions $\mathbf{a}_1 = a_{10} + a_{11}m_0\theta^2 + \overline{a}_{11}m_0\overline{\theta}^2 + a_{12}m_0\theta^2\overline{\theta}^2$ $m_0 \sim 1 \text{ TeV}$ $\zeta_1 = \zeta_{10} + \zeta_{10} m_0 \theta^2$ Example $\int d^2\theta (1 + Bm_0\theta^2) \mu H_1 H_2 = \int d^2\theta \mu H_1 H_2 + B\mu m_0 h_1 h_2$ Spurion Standard Superpotential Scalar higgs Operator term mixing

MSSM with effective operators Guillaume Drieu La Rochelle

Theoretical Expectations

- Scalar Higgs potential
 - D and F terms

 $\mathbf{H}_1 = H_1 + \sqrt{2}\theta \tilde{H}_1 + \theta^2 F_{H_1}$

- Scalar Higgs Gauge bosons interactions
 - $\mathcal{L} = (DH_1)^{\dagger} DH_1$
- Standard fermions masses and couplings
- Higgsinos masses
- Higgsinos gauginos mixing

MSSM with effective operators Guillaume Drieu La Rochelle

Theoretical Expectations

Standard MSSM Scalar Higgs potential D and F terms $\partial \overline{W} \ \partial W$ $\mathbf{H}_1 = H_1 + \sqrt{2}\theta \tilde{H}_1 + \theta^2 F_{H_1}$ $\partial \overline{H}_1 \partial H_1$ Scalar Higgs – Gauge bosons interactions • $\mathcal{L} = (DH_1)^{\dagger} DH_1$ Standard fermions masses and couplings Higgsinos masses Higgsinos gauginos mixing \succ

Effective Operators

 $-\frac{\partial \overline{W}}{\partial \overline{H}_i} \left(\frac{\partial^2 K}{\partial \overline{H}_i \partial H_i}\right)^{-1} \frac{\partial W}{\partial H_i}$

MSSM with effective operators Guillaume Drieu La Rochelle

Theoretical Expectations

Scalar Higgs potential

• D and F terms $\mathbf{H}_1 = H_1 + \sqrt{2}\theta \tilde{H}_1 + \theta^2 F_{H_1}$

Scalar Higgs – Gauge bosons interactions

- $\mathcal{L} = (DH_1)^{\dagger} DH_1$
- Standard fermions masses and couplings
- Higgsinos masses
- Higgsinos gauginos mixing

Standard MSSM

$$-\frac{\partial \overline{W}}{\partial \overline{H}_{1}}\frac{\partial W}{\partial H_{1}}$$

$$\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\overline{\phi} + i\partial_{\mu}\phi gv^{\mu}\overline{\phi}$$

$$+ \text{h.c.} + \overline{\phi}(gv)^{2}\phi$$

Effective Operators

 $-\frac{\partial \overline{W}}{\partial \overline{H}_{i}} \left(\frac{\partial^{2} K}{\partial \overline{H}_{i} \partial H_{j}}\right)^{-1} \frac{\partial W}{\partial H_{j}}$ $\frac{1}{2} K_{i\overline{j}} \partial_{\mu} \phi^{i} \partial^{\mu} \overline{\phi}^{\overline{j}} + i K_{in} \partial_{\mu} \phi^{i} (gv)^{n \mu}$ $+ K_{nm} (gv)^{n \mu} (gv)^{m \mu} + K_{n} (gv)^{n 2}$

MSSM with effective operators Guillaume Drieu La Rochelle

Theoretical Expectations

1

Scalar Higgs potential

• D and F terms $\mathbf{H}_1 = H_1 + \sqrt{2}\theta \tilde{H}_1 + \theta^2 F_{H_1}$

Scalar Higgs – Gauge bosons interactions

- $\mathcal{L} = (DH_1)^{\dagger} DH_1$
- Standard fermions masses and couplings
- Higgsinos masses
- Higgsinos gauginos mixing

Standard MSSM

$$-\frac{\partial \overline{W}}{\partial \overline{H}_1}\frac{\partial W}{\partial H_1}$$

$$\frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\overline{\phi} + i\partial_{\mu}\phi gv^{\mu}\overline{\phi} + \text{h.c.} + \overline{\phi}(gv)^{2}\phi$$

Effective Operators

 $-\frac{\partial \overline{W}}{\partial \overline{H}_{i}} \left(\frac{\partial^{2} K}{\partial \overline{H}_{i} \partial H_{j}}\right)^{-1} \frac{\partial W}{\partial H_{j}}$ $\frac{1}{2} K_{i\overline{j}} \partial_{\mu} \phi^{i} \partial^{\mu} \overline{\phi}^{\overline{j}} + i K_{in} \partial_{\mu} \phi^{i} (gv)^{n \mu}$ $+ K_{nm} (gv)^{n \mu} (gv)^{m \mu} + K_{n} (gv)^{n 2}$

An automatic code :

- LanHEP
- Mathematica

- Renormalisation/Reparametrisation
- Input Set $\{M_Z, M_W, M_{A_0}, e, t_\beta\}$

- Renormalisation/Reparametrisation Input Set
- In the effective expansion : parameter $\frac{1}{M}$
- In the loop expansion

The two effects add up at order 1

 \implies Consider only the $\frac{1}{M}$ expansion

Input Set $\{M_Z, M_W, M_{A_0}, e, t_\beta\}$

$$m_h = m_{h\,0} + \delta_{1\text{-loop}}m_h + \delta_{\text{eff}}m_h$$

- Renormalisation/Reparametrisation Input S
- In the effective expansion : parameter $\frac{1}{M}$
- In the loop expansion

The two effects add up at order 1

 \implies Consider only the $\frac{1}{M}$ expansion

Effects

• Standard coupling
$$Z\overline{f}f$$
 changes

 $g_{Z,L} \longrightarrow g_{Z,L}(SM) + \delta g_{Z,L}$

Input Set $\{M_Z, M_W, M_{A_0}, e, t_\beta\}$

$$m_h = m_{h\,0} + \delta_{1\text{-loop}} m_h + \delta_{\text{eff}} m_h$$

- Renormalisation/Reparametrisation Input
- In the effective expansion : parameter $\frac{1}{M}$
- In the loop expansion

The two effects add up at order 1

 \implies Consider only the $\frac{1}{M}$ expansion

Input Set $\{M_Z, M_W, M_{A_0}, e, t_\beta\}$

$$m_h = m_{h\,0} + \delta_{1\text{-loop}} m_h + \delta_{\text{eff}} m_h$$

➢ Effects

• Standard coupling $Z\overline{f}f$ changes

 $g_{Z,L} \longrightarrow g_{Z,L}(SM) + \delta g_{Z,L}$

Higgs & Neutralinos masses
 Correlations
 \mathcal{O}_{eff} m_{χ_0} Sum rules modified

- Renormalisation/Reparametrisation Input
- In the effective expansion : parameter $\frac{1}{M}$
- In the loop expansion

The two effects add up at order 1

 \implies Consider only the $\frac{1}{M}$ expansion

Input Set $\{M_Z, M_W, M_{A_0}, e, t_\beta\}$

$$m_h = m_{h\,0} + \delta_{1\text{-loop}} m_h + \delta_{\text{eff}} m_h$$

Effects

 $g_{Z,L} \longrightarrow g_{Z,L}(SM) + \delta g_{Z,L}$

• Higgs & Neutralinos masses Correlations \mathcal{O}_{eff} $m_{h,H}$ \mathcal{O}_{eff} m_{χ_0} Sum rules modified The effect of each operator propagates to all the Higgs sector !

Theory \longleftrightarrow Data \succ

- Renormalisation/Reparametrisation
- In the effective expansion : parameter $\frac{1}{M}$
- In the loop expansion

The two effects add up at order 1

 \implies Consider only the $\frac{1}{M}$ expansion

nput Set
$$\{M_Z, M_W, M_{A_0}, e, t_\beta\}$$

$$m_h = m_{h\,0} + \delta_{1\text{-loop}} m_h + \delta_{\text{eff}} m_h$$

Effects \succ

Standard coupling $Z\overline{f}f$ changes **Constraints** $g_{Z,L} \longrightarrow g_{Z,L}(SM) + \delta g_{Z,L}$ LEP, ... Higgs & Neutralinos masses $m_{h,H}$ **Correlations** $\mathcal{O}_{\mathrm{eff}}$

Sum rules modified

The effect of each operator propagates to all the Higgs sector !

Theory \longleftrightarrow Data \geq

- Renormalisation/Reparametrisation
- In the effective expansion : parameter \overline{M}
- In the loop expansion

The two effects add up at order 1

 \implies Consider only the $\frac{1}{M}$ expansion

nput Set
$$\{M_Z, M_W, M_{A_0}, e, t_\beta\}$$

$$m_h = m_{h\,0} + \delta_{1\text{-loop}} m_h + \delta_{\text{eff}} m_h$$

Effects

The effect of each operator propagates to all the Higgs sector !

Constraints Coming from standard measurements

Coupling between Z and standard fermions

 $g_{Z\overline{f}f L/R} = (1 + \kappa_{L/R}) g_{Z\overline{f}f L/R}(SM)$

MSSM with effective operators Guillaume Drieu La Rochelle

Constraints Coming from standard measurements

Coupling between Z and standard fermions

 $g_{Z\overline{f}f~\mathrm{L/R}} = (1+\kappa_{\mathrm{L/R}})~g_{Z\overline{f}f~\mathrm{L/R}}(\mathrm{SM})$

$$\kappa_{left} = -(a_{10} - t_{\beta}^2 a_{30} + t_{\beta}^4 a_{20}) \frac{2}{e^2 (1 + t_{\beta}^2)^2} \frac{M_W^2}{M^2}$$
$$\kappa_{right} = (a_{10} - t_{\beta}^2 a_{30} + t_{\beta}^4 a_{20}) \frac{2(4c_W^2 - 1)}{e^2 (1 + 2c_W^1)(1 + t_{\beta}^2)^2} \frac{M_W^2}{M^2}$$

Constraints Coming from standard measurements

Coupling between Z and standard fermions

 $g_{Z\overline{f}f L/R} = (1 + \kappa_{L/R}) g_{Z\overline{f}f L/R}(SM)$

$$\kappa_{left} = -(a_{10} - t_{\beta}^2 a_{30} + t_{\beta}^4 a_{20}) \frac{2}{e^2 (1 + t_{\beta}^2)^2} \frac{M_W^2}{M^2}$$

$$\kappa_{right} = (a_{10} - t_{\beta}^2 a_{30} + t_{\beta}^4 a_{20}) \frac{2(4c_W^2 - 1)}{e^2 (1 + 2c_W^1)(1 + t_{\beta}^2)^2} \frac{M_W^2}{M^2}$$

Forward Backward asymmetries

Observable	Order0	a_{10}	a_{20}	a_{30}	Exp. Value
$A_{FB}(\mu)$	0.0181	0.000033	0.00052	-0.00013	0.0169 ± 0.0013
$A_{FB}(b)$	0.1053	0.0001	0.0017	-0.0004	0.0995 ± 0.0017
$A_{FB}(c)$	0.0753	0.00008	0.0012	-0.0003	0.0713 ± 0.0036

Constraints Coming from standard measurements

Coupling between Z and standard fermions

 $g_{Z\overline{f}f L/R} = (1 + \kappa_{L/R}) g_{Z\overline{f}f L/R}(SM)$

$$\kappa_{left} = -(a_{10} - t_{\beta}^2 a_{30} + t_{\beta}^4 a_{20}) \frac{2}{e^2 (1 + t_{\beta}^2)^2} \frac{M_W^2}{M^2}$$

$$(a_{10} - t_{\beta}^2 a_{20} + t_{\beta}^4 a_{20}) \frac{2(4c_W^2 - 1)}{M_W^2} = \frac{2(4c_W^2 - 1)}{M_W^2}$$

$$\kappa_{right} = (a_{10} - t_{\beta}^2 a_{30} + t_{\beta}^4 a_{20}) \frac{2(4c_W^2 - 1)}{e^2(1 + 2c_W^1)(1 + t_{\beta}^2)^2} \frac{M_W^2}{M^2}$$

Forward Backward asymmetries

Observable	Order0	a_{10}	a_{20}	a_{30}	Exp. Value
$A_{FB}(\mu)$	0.0181	0.000033	0.00052	-0.00013	0.0169 ± 0.0013
$A_{FB}(b)$	0.1053	0.0001	0.0017	-0.0004	0.0995 ± 0.0017
$A_{FB}(c)$	0.0753	0.00008	0.0012	-0.0003	0.0713 ± 0.0036

Constraints quite loose $a_{i0} \sim 1$

Operators appearing :

	Main Operators	Effects
Neutralino mass	a_{61},ζ_{10}	A few GeV
Light Higgs mass	$\zeta_{10},\zeta_{11},a_{22},a_{61},a_{62}$	10-20 GeV

Operators appearing :

	Main Operators	Effects
Neutralino mass	a_{61},ζ_{10}	A few GeV
Light Higgs mass	$\zeta_{10},\zeta_{11},a_{22},a_{61},a_{62}$	10-20 GeV

Operators appearing :

	Main Operators	Effects
Neutralino mass	a_{61},ζ_{10}	A few GeV
Light Higgs mass	$\zeta_{10},\zeta_{11},a_{22},a_{61},a_{62}$	10-20 GeV

Correction to the light Higgs mass (from Antoniadis et al.)

$$\begin{split} \delta' m_h^2 &= -2 \, v^2 \left[\alpha_{22} \, m_0^2 + (\alpha_{30} + \alpha_{40}) \mu_0^2 + 2 \alpha_{61} \, m_0 \, \mu_0 - \alpha_{20} \, m_Z^2 \right] - \frac{\left(2 \, \zeta_{10} \, \mu_0\right)^2 \, v^4}{m_A^2 - m_Z^2} \\ &+ \frac{v^2}{\tan \beta} \left[\frac{1}{\left(m_A^2 - m_Z^2\right)} \left(4 \, m_A^2 \left(\left(2 \alpha_{21} + \alpha_{31} + \alpha_{41} + 2 \alpha_{81}\right) m_0 \, \mu_0 + \left(2 \alpha_{50} + \alpha_{60}\right) \mu_0^2 + \alpha_{62} \, m_0^2 \right) \right. \\ &- \left. \left(2 \alpha_{60} - 3 \alpha_{70}\right) m_A^2 \, m_Z^2 - \left(2 \alpha_{60} + \alpha_{70}\right) m_Z^4 \right) + \frac{8 \left(m_A^2 + m_Z^2\right) \left(\mu_0 \, m_0 \, \zeta_{10} \, \zeta_{11}\right) v^2}{\left(m_A^2 - m_Z^2\right)^2} \right] \\ &+ \mathcal{O}(1/\tan^2 \beta) \end{split}$$

Operators appearing :

	Main Operators	Effects
Neutralino mass	a_{61},ζ_{10}	A few GeV
Light Higgs mass	$\zeta_{10},\zeta_{11},a_{22},a_{61},a_{62}$	10-20 GeV

Higgs/Neutralinos Correlations

Sensitive Operators : Most sensitive are : ζ_{10} a_{61}

Higgs/Neutralinos Correlations

Sensitive Operators :

Most sensitive are : ζ_{10} a_{61}

Higgs and neutralinos correlation for $\zeta_{10} \; a_{61}$

Higgs/Neutralinos Correlations

Sensitive Operators : Most sensitive are : ζ_{10} a_{61}

Analogy with radiatives corrections

Analogy with radiatives corrections

Similar results :

- Mass sum rules get modified
- Corrections depend on the physical input
- Corrections to different observables are correlated

Analogy with radiatives corrections

Similar results :

- Mass sum rules get modified
- Corrections depend on the physical input
- Corrections to different observables are correlated
- Can we include one in the other?
 - Use effective couplings to account for loops
 - Check whether a loop induces the same correlations than an effective operator

Fasten one-loop calculations

Outlook

- Higgs phenomenology
- Effects on Dark Matter and colliders experiments
- Join effective operators with one loop calculations
- Infer what kind of physics leads to what kind of operators