

LHC Physics Prospects

Silvano Tosi

Institut de Physique Nucléaire de Lyon

Rencontres de Physique des Particules 2010 - Lyon

Contents

- Current view of particle physics
- The LHC and the experiments
- Early physics

- Selected topics of the long term program
- Conclusions

Current View of Particle Physics

The Standard Model

- A quantum field theory describing pointlike spin-1/2 constituents interacting by exchanging spin-1 particles.
- Remarkably complete and successful description of known phenomena in particle physics. Precisely overtested

Quantity	Value PDG 2009	Standard Model	Pull	Dev.
m_t [GeV]	$170.9 \pm 1.8 \pm 0.6$	171.1 ± 1.9	-0.1	-0.8
M_W [GeV]	80.428 ± 0.039	80.375 ± 0.015	1.4	1.7
	80.376 ± 0.033		0.0	0.5
M_Z [GeV]	91.1876 ± 0.0021	91.1874 ± 0.0021	0.1	-0.1
Γ_Z [GeV]	2.4952 ± 0.0023	2.4968 ± 0.0010	-0.7	-0.5
$\Gamma(had)$ [GeV]	1.7444 ± 0.0020	1.7434 ± 0.0010	-	-
$\Gamma(inv)$ [MeV]	499.0 ± 1.5	501.59 ± 0.08	-	-
$\Gamma(\ell^+\ell^-)$ [MeV]	83.984 ± 0.086	83.988 ± 0.016		-
σ_{had} [nb]	41.541 ± 0.037	41.466 ± 0.009	2.0	2.0
R_e	20.804 ± 0.050	20.758 ± 0.011	0.9	1.0
R_{μ}	20.785 ± 0.033	20.758 ± 0.011	0.8	0.9
R_{τ}	20.764 ± 0.045	20.803 ± 0.011	-0.9	-0.8
R_b	0.21629 ± 0.00066	0.21584 ± 0.00006	0.7	0.7
R_c	0.1721 ± 0.0030	0.17228 ± 0.00004	-0.1	-0.1
$A_{FB}^{(0,e)}$	0.0145 ± 0.0025	0.01627 ± 0.00023	-0.7	-0.6
$A_{FB}^{(0,\mu)}$	0.0169 ± 0.0013		0.5	0.7
$A_{FB}^{(0,\tau)}$	0.0188 ± 0.0017		1.5	1.6
$A_{FB}^{(0,b)}$	0.0992 ± 0.0016	0.1033 ± 0.0007	-2.5	-2.0
$A_{FB}^{(0,c)}$	0.0707 ± 0.0035	0.0738 ± 0.0006	-0.9	-0.7
$A_{FB}^{(0,s)}$	0.0976 ± 0.0114	0.1034 ± 0.0007	-0.5	-0.4
$\bar{s}_{\ell}^{2}(A_{FB}^{(0,q)})$	0.2324 ± 0.0012	0.23149 ± 0.00013	0.8	0.6
	0.2238 ± 0.0050		-1.5	-1.6
A_e	0.15138 ± 0.00216	0.1473 ± 0.0011	1.9	2.4
	0.1544 ± 0.0060		1.2	1.4
	0.1498 ± 0.0049		0.5	0.7
A_{μ}	0.142 ± 0.015		-0.4	-0.3
A_{τ}	0.136 ± 0.015		-0.8	-0.7
	0.1439 ± 0.0043		-0.8	-0.5
A_b	0.923 ± 0.020	0.9348 ± 0.0001	-0.6	-0.6
A_c	0.670 ± 0.027	0.6679 ± 0.0005	0.1	0.1
A_s	0.895 ± 0.091	0.9357 ± 0.0001	-0.4	-0.4
g_L^2	0.3010 ± 0.0015	0.30386 ± 0.00018	-1.9	-1.8
g_R^2	0.0308 ± 0.0011	0.03001 ± 0.00003	0.7	0.7
$g_V^{\nu e}$	-0.040 ± 0.015	-0.0397 ± 0.0003	0.0	0.0
$g_A^{\nu e}$	-0.507 ± 0.014	-0.5064 ± 0.0001	0.0	0.0
A_{PV}	$(-1.31 \pm 0.17) \cdot 10^{-7}$	$(-1.54 \pm 0.02) \cdot 10^{-7}$	1.3	1.2
$Q_W(Cs)$	-72.62 ± 0.46	-73.16 ± 0.03	1.2	1.2
$Q_W(Tl)$	-116.4 ± 3.6	-116.76 ± 0.04	0.1	0.1
$\frac{\Gamma(b \rightarrow s\gamma)}{\Gamma(b \rightarrow Xe\nu)}$	$(3.55^{+0.53}_{-0.46}) \cdot 10^{-3}$	$(3.19\pm0.08)\cdot10^{-3}$	0.8	0.7
$\frac{1}{2}(g_{\mu} - 2 - \frac{\alpha}{\pi})$	4511.07(74) 10-9	$4509.08(10) \cdot 10^{-9}$	2.7	2.7
τ_{τ} [fs]	$290.93 \pm 0.48^{24, 2}$	291.80 ± 1.76	-0.4	-0.4

The EW Symmetry Breaking

- The W and Z bosons acquire mass via the spontaneous symmetry breaking mechanism:
 - The EWSB in the SM occurs by introducing a scalar field ϕ
 - ϕ has a finite vacuum expectation value: 246 GeV
 - this gives mass to the fermions as well.
- Is this the correct picture ? The prediction can be tested!
- Search for a scalar particle (the Higgs boson): its production and decay properties are fixed.
- The mass however remains a free parameter !
 - To be determined by the experiments.

.. but

- ... but the SM appears to be an incomplete theory.
- It can be viewed as a low-energy effective theory of a more general theory.
- Major basic questions remain to be answered:
 - What is the origin of mass ? Is the EW symmetry breaking mechanism of the SM the right description ?
 - What is dark matter ?

- What is the source of the baryon asymmetry ? Why did antimatter disappear?
- Why are there 3 generations ? Why are the masses of the elementary particles so different ?
- How to reconcile gravity with the other forces ? Why 3+1 dimensions ?
- Many theories proposed along the years: the LHC will try to answer as many questions as possible
 - LHC designed as a discovery machine. Tried to take into account the widest range of scenarios

Supersymmetry

- All SM particles have a partner with spin differing by ±1/2
- SUSY describes all forces. Modifies the running of gauge couplings to provide grand unification at a single scale
- It offers solution to hierarchy problem.
 - Huge disparity between EW and M_{PL} scales
- ... but so far no SUSY particles observed : SUSY must be broken.

Spin 1/2	Spin 0	Spin 1	Spin 1/2
Quark	Squarks	W ₃ , B	₩ ₃ , B̃
Leptons	Sleptons	W [±]	Ŵ±
Higgsino $\tilde{H_1}, \tilde{H}_2$	Higgs H ₁ ,H ₂	gluon	gluino
+ graviton / grav	vitino		

- If R-parity is conserved: R=(-1)^{3(B-L)+2S}
 - SUSY partners always produced in pairs
 - Lightest particle is stable: dark matter candidate!

 \widetilde{W}^{\pm} , \widetilde{H}^{\pm} <-> charginos \widetilde{W}_3 , \widetilde{B} , \widetilde{H}_1 , \widetilde{H}_2 <-> neutralinos

- > 100 free parameters....
- mSUGRA scenario: reduced to 5

 $-m_0, m_{1/2}$: common scalars and gauginos masses

- A₀: common trilinear coupling
- tanβ: ratio of vacuum expectation
 values of the two Higgs doublets
- sign of Higgsino mixing parameter

String Theory and Extra Dimensions

- Fundamental particles are not pointlike, but rather small loops of vibrating strings.
- The theory implies additional spatial dimensions
 - The additional dimensions are compactified
- It explains why gravity appears so much weaker
- Standard particles would have heavier versions recurring at higher energies as they navigate smaller dimensions (Kaluza-Klein recurrences).
- Graviton may be not visible in the brane (ordinary dimensions), disappearing in the other dimensions: energymomentum imbalance.

The Large Hadron Collider and the Experiments

• The LHC will try to shed as much light as possible: the adventure began !

The LHC: an Adventure Started Long Ago

- 80's: first proposals of a pp collider
- 1994: project approved
- 2000: end of LEP operations. LHC construction phase
- 2008: protons injected in the ring. Magnetic quench, investigation of the accident and repair.

- 20/11/2009: protons in the ring. First collisions at 900 GeV on 23/11!
- 30/11/2009: world record! 1.18 TeV/beam.
- 12/2009 collisions at c.o.m. energy 2.26 TeV, then winter shutdown.
- 02/2010: run restarts. Towards 7 TeV and later 10 TeV collisions.

Nominal parameters c.o.m. energy: 14 TeV Lumi: 10³⁴ cm⁻² s⁻¹ Integrated lumi: 100 fb⁻¹/year

Collisions of protons and heavy ions too

Plans for 2010 Run

- Workshop in Chamonix this week
- Decisions on the plan for 2010 will be taken there
- Run resumed in February at 7 TeV and possibly later on at 10 TeV
 - At 7 TeV, $\sigma(W)$, $\sigma(Z)$, $\sigma(tt)$ decrease by a factor 2-3 wrt 10 TeV
- After that sufficient experience will be collected, likely in June the maximal c.o.m. energy for 2010 will be decided
- Aiming at ~500 pb⁻¹ of data in 2010
- Possibly a shutdown at the end of 2010: to be decided.

- **Great physics** potential.
- In fact, a *b-, Z-, W-*, top- ... and morefactory !
- Assuming √s=10 TeV and 100 pb⁻¹ of data:
 - 3M W to leptons
 - 300k Z to leptons
 - 30k top-pairs
- A huge event rate !

Selecting the Events

- Rate for inelastic collisions: 10⁹ Hz
- Aim at keeping 150-200 Hz
 - This corresponds to 25 GB/minute !
 - 4M of GB are needed per year !
- « Interesting » events occur at a 1 10 Hz frequency
- So, try to reject as much « noise » as possible while avoiding to kill physics and to bias the sample!
- Efficient triggers: hardware (typically objects from calorimeters and muon systems) and software
 - Simple: for commissioning, debugging and understanding
 - Inclusive: one trigger for many analyses; able to discover the unexpected!
 - Robust: can run on pathological events, can run on events with 10 times more hits than predicted by simulation
 - Redundant: if a trigger component has a problem, the event is not lost

Two General Purpose Detectors

Detector	Resolution	Coverage	CMS
Tracker	σ(p _T)/p _T ~1-5%p _T	η <2.4	Magnetic field : 4
Ecal	σ(E)/E~3%/VE +0.5%	η <3	
Hcal	σ(E)/E~100%/√E +4%	η <3 (b) / 5 (f)	RETURN YOKE SUPERCONDUCTING
Muon	σ(p _T)/p _T ~10%p _T	ŋ <2.4	FEET FORWARD CALORIMET
			HCAL MUON CHAMBERS

Two Specialized Experiments

- Vertex:
 - $\sigma(x)^{\sim}50$ (150) μ m for primary (sec.) vertices; $\sigma(t)$: 40 fs on *b*-hadron lifetimes
- Energy:
 - σ(E)/E~9%/VE + 0.8%(ECAL)
 - σ(E)/E~69%/VE + 9%(HCAL)
- Tracking:
 - eff ~ 95% for p > 5 GeV; $\sigma(p)/p$ ~0.4%
- Particle ID:
 - eff(K) ~ 88% w/3% misID; eff(μ) ~ 95% w/ 5% misID

Making a Good Use of Known Particles

First Tasks: Understanding the Detectors

- A lot of QCD events:
 - hard interactions (high p_T): perturbative QCD
 - soft interactions (low p_T): minimum bias events
 - important background to many analyses
- Use these events to
 - Study the underline event (UE): initial and final state radiation (ISR/FSR); beam-beam remnants; multiple-parton interaction (MPI); spectators...
 - Improve the simulation and modelling of minimum bias.
 - Evaluate jet
 reconstruction
 performances: energy
 scale, resolution,...

First Look at LHC Data!

• First paper by Alice appeared on the arXiv on November 29th!

 First papers by the other experiments in preparation: to be submitted soon!

The Z and W Bosons

- Large cross section for Z and W production
 - $\sigma(Z > II) \sim 1.4 \text{ nb} (@ 10 \text{ TeV})$
 - σ(W->/ν) ~ 14 nb (@ 10 TeV)
- Isolated leptons provide a clear experimental signature.
- Measuring Z and W properties will help understanding the detectors.
 - Calibration/alignement
 - Trigger and lepton ID efficiencies
 - Luminosity
- Many interesting measurements using W and Z

- W mass
 - Precision test of the SM
 - Constraints on the Higgs mass
 - Aim:15 MeV uncertainty (now ~25 MeV)

Cross sections

- Known at the <1% level at the NNLO
- Negligible stat errors above 10 pb⁻¹
- Systematics of some % (improving with L)
- --> Precise test of perturbative QCD
- Lepton charge asymmetry
 - With ~100 pb⁻¹, the uncertainty will be comparable to that of the PDFs.

- Observation with $0.1 - 1 \text{ fb}^{-1}$ 21

The Top Quark

- The top quark is the heaviest elementary particle known to date
 - m = (173.1±1.3) GeV*; $\tau < 10^{-25}$ s
 - It decays before hadronizing.
 - BR(*t*->*Wb*) ~ 100%
- The top quark can be produced either alone (single top) or in pairs.

s-channel

W

- Single top: via weak interaction $-t\bar{t}$ pairs: via strong interaction. 3 decay channels: leptonic, semileptonic, hadronic.
- Important tests of the SM
 - Deviations may indicate NP
- Important tool to test the detector performances
 - Many subsystems are involved (leptons, jets, missing energy)
- Background to many processes

tW-channel

8 66666

* Tevatron, March 2009:

arXiv:0903:2503 [hep-ex] 22

t-channel

- At the Tevatron, σ(tt) is measured with an uncertainity of ~9%, comparable to the theoretical one.
- At the LHC (10 TeV) the cross section will be more than 50 times larger.
 - With ~100 pb⁻¹, uncertainty of 5-10%
- NP can manifest itself in the top quark sector in many ways:
 - NP expected to have a priviledged coupling to tops: resonances decaying to tt, b'->Wt, Higgs, stop.
- W polarization and spin correlation
 - A few % uncertainty with 10 fb⁻¹
 - Test coupling to fermions and SM pattern
 - Deviations may indicate anomalous couplings or new particles (including a H[±])
- Top mass
 - Precision below 1 GeV with 10 fb⁻¹
 - * Phys.Rev.Lett.103:092001 Phys.Rev.Lett.103:092002

- Single top was discovered at the Tevatron with ~3 fb⁻¹ of data *.
- At the LHC, σ is 120 to 500 times larger (at 14 TeV, varying w/channel)
 - Observation with 700 pb⁻¹ (10 TeV)
- FCNC and anomalous couplings
- Direct constraints on V_{tb}
- $\begin{aligned} & -10\% \text{ uncertainty on } R \text{ with 250 pb}^{-1} \\ & R = \frac{\Gamma(t \to Wb)}{\Gamma(t \to Wq(=d,s,b))} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{td}|^2} \end{aligned}$

Searching for Beyond the Standard Model Physics

Hunting for SUSY

- Strongly interacting sparticles dominate the production
- Long cascades into the lightest stable particle:
 - Large missing E_T
 - Large multiplicity of high p_T jets
 - Leptons
- Look for excess of events in a

phase-space region where SUSY is expected

 $\tilde{\chi}_{2}^{0}$

a

Excess due to SUSY clearly visible !

 $\tilde{\chi}_1^{C}$

 \tilde{l}

- SUSY particles with masses ≈TeV are observable with ~ 1 fb⁻¹
- Typically 2 LSP in the final state: large missing energy
 - Rough determination of SUSY masses and model parameters from the endpoints.
 - Apply kinematical constraints on the chain.
 - Endpoints are function of the particles in the chain
 - Expect to measure m_0 , $m_{1/2}$ at the 1-3 %
 - tanβ, A₀ only order of magnitude (but tanβ from Higgs width too !)

Searches for « Exotica »

- Exotica usually refers to beyond SM physics except SUSY.
 - A large number of models. LHC experiments actively try to explore all possibilities. Only a few examples here
- Dilepton resonances: a channel historically important for discoveries
 - Foreseen in many models: grand unification theories (GUT), technicolors, extra dimensions, little Higgs....
- Leptoquarks (GUT): carry both lepton and quark quantum numbers. Striking signature!

- Care has been taken in order not to miss exotic events
 - Good trigger efficiency also for peculiar signatures
- Examples:
 - Heavy stable charged particles (HSCP): foreseen in many models
 - High p_T , heavy mass, very low β
 - Muon trigger has good efficiency except for too slow

Dedicated trigger

- departicles (wrong bunch crossing assignment) and for R-hadrons (charge flipped)
 - MET, $\Sigma(E_T)$ triggers: efficient but model dependent
- In some models, particles exist that can be trapped in the detector and decay much later
 - Search for particles in no-beam periods or in gaps between bunches.
- Hidden valley:
 - A hidded sector (v) appended to the SM;
 a barrier makes v-particles rare at low E, but possible at LHC.
 - Some long-lived or even stable particles.
 Typical decay to *b* pairs.
 - Highly displaced neutral vertices
 - Search for trackless jets with high log(Ehad/Eem), trackless jets with associated muon, muon clusters

The Higgs Boson

- Direct searches at LEP: m(H)>114 GeV at the 95% C.L.
- Tevatron excluded the range 160-170 GeV
- Precision EW constraints: < 157 GeV (< 186 when adding LEP2 data)

SM Higgs at the LHC

Higgs: High Mass Region

- *H->ZZ ->* 4 leptons:
 - « golden mode » for masses above ~ 130 GeV
 - CMS and ATLAS have a very good resolution and efficiency
- *H->WW ->/v/v*:
 - Dominant rate for masses above ~130 GeV
 - But missing energy spoils Higgs mass: use transverse mass

Higgs: Low Mass Region

- *H->* $\tau\tau$ dominant rate (after $b\bar{b}$) below ~130 GeV
 - Production via vector boson fusion provides unique signature to reduce backgrounds.
- *H->yy* most powerful mode for low masses
 - CMS and ATLAS have a very good diphoton mass resolution
 - Important backgrounds to reject:γ+jets and jet+jet.

Higgs: Discovery Potential

- Broad discovery potentials especially above ~130 GeV
- More data needed for masses below 130 GeV
- If Higgs is not there, exclusion requires lower statitics in general.

 Combining the two experiments, 1fb⁻¹ of data should be enoug for a discovery above ~140 GeV

MSSM Higgs Bosons

- In minimal extensions of the SM, there are two Higgs doublets:
 - 5 physical states: h⁰, H⁰ (CP
 +), A⁰ (CP-), H⁺, H⁻
- At tree level, description using two parameters: m(A) and tanβ.
- *h⁰*, *H⁰* and *A⁰* mostly decay to *b*b
 - $\tau\tau$ and $\mu\mu$ are more rare, but easier.
- *H*[±] mainly produced by
 t->Hb; dominat decay τν

 At least one Higgs boson can be observed at ATLAS and CMS, possibly more than one...

Heavy-Ion Collisions

Heavy Ion Collisions

- The LHC will collide not only protons but heavy ions too
 - ~ 1 month per year dedicated to heavy ion runs
- ALICE experiment specialized for heavy ion physics

	Beam	√s (TeV)	Lumi (cr	m⁻² s⁻¹)	
	proton	14	10 ³⁴		
	Light nuclei	7	10 ³⁰ - 10 ³¹		
	Lead	5.5	1027		
			Protons	Pb	
N.	Bunches / ring		2835	608	
Dis	stance between	bunches	25	125	
N. Particles / bunch		1011	6 10 ⁷		
N.	particles/ ring		3 1014	3 10 ¹⁰	
Be	am current (mA)	530	5	
Lumi lifetime (h)		10	10		

 At very high temperatures and densities, quarks and gluons are not confined inside composite particles: quark-gluon plasma

Heavy Quarks

- Heavy quarks (c and b) probe QCD in extreme conditions
 - Production time scale shorter than medium, and lifetime larger.
 - Low p_T : probe small Bjorken-x structure of p and nuclei
 - Low-momentum gluons close to saturation
 - Intermediate p_T : medium thermalisation
 - High p_T : medium density via energy loss
- Calculable in pQCD; calibration from *pp* and *pA*.
- Essentially produced in initial impact: probe of the high density phase
- An example: secondary J/ψ from *B* decays
 - Yield reduced and η distribution significantly narrower as a result of b quenching

• Charmonium and bottomonium are probes of QCD phase transition

Flavour Physics

b Physics

- A very large number of *b* hadrons produced at the LHC: $\sigma(b)^{\sim}$ mb
- LHCb specialized experiment for *b* physics.
- *b*-hadron physics allows to test SM prediction of CP violation and search for indirect NP effects in asymmetries and decay rates.

• In the SM, one irremovable phase in the matrix: CP violation. Asymmetry between matter and antimatter

0.06

0.04

0.02

0

LHCb

SM value

Integrated Luminosity (fb⁻¹)

- All *b*-hadrons accessible at the LHC.
- At the Tevatron, tension with the SM predictions in the B_s system: 2.2 σ from the SM. In the SM β_s =(1.05±0.04)^o

43

Rare b-hadron decays

- Rare decays can probe SM.
 - Indirect evidence of NP
- $B_s \rightarrow \mu\mu$ is very rare in the SM ~3.4 × 10⁻⁹
 - BR enhanced in NP scenarios (models with extended Higgs sector)
 - Current Tevatron limit: $< 47 \times 10^{-9}$
 - With 9 fb⁻¹, LHCb can reach 20×10^{-9}
- *b->sll*
 - NP can modify BR and angular distributions
 - Sensitive to SUSY, extra dimension.
 - With 2fb⁻¹, A_{fh} spectrum

- With 2fb⁻¹, $\sigma(\psi)/\psi \sim 10\%$ $\tan \psi \equiv \left| \frac{\mathcal{A} \left(\bar{B}_{(s)} \to \Phi^{\mathcal{CP}} \gamma_{R} \right)}{\mathcal{A} \left(\bar{B}_{(s)} \to \Phi^{\mathcal{CP}} \gamma_{L} \right)} \right| \xrightarrow{\mathbf{B}^{0} \to \mathbf{X}_{s} \gamma_{I}}{\mathbf{B}^{0} \to \mathbf{X}_{s} \gamma_{I}}$

Conclusions

- Many open questions in particle physics
- The LHC is a powerful tool to try and answer as many questions as possible.
- The LHC started to deliver *p*-*p* collisions: a new era in particle physics has began
- Detectors are ready to collect and analyse data !
- First papers on collision data already coming out !
- ... stay tuned !