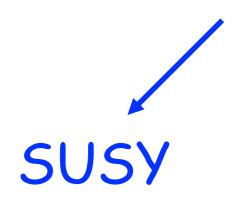
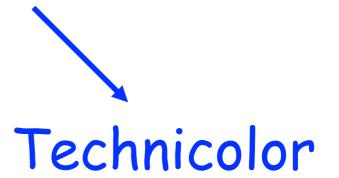
Monopoles, Anomalies, and Electroweak Symmetry Breaking

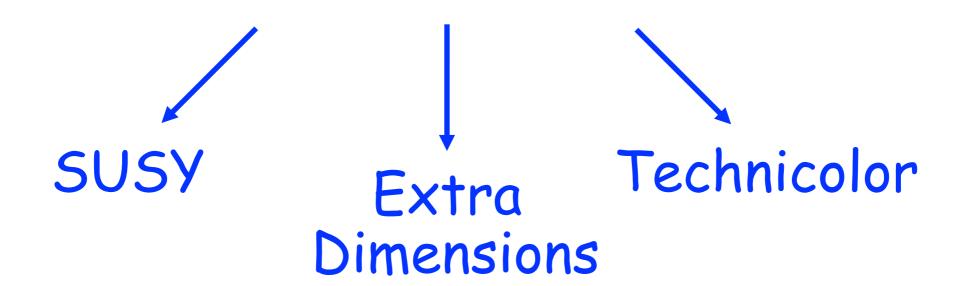
John Terning with Csaba Csaki, Yuri Shirman in progress

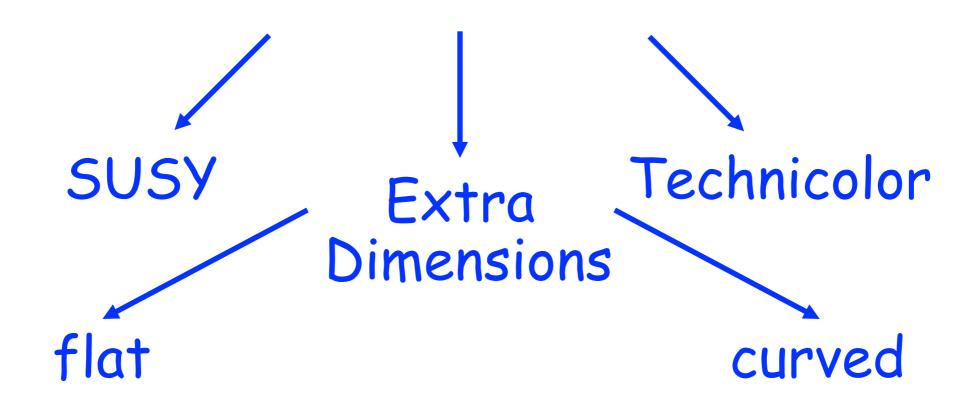
Outline

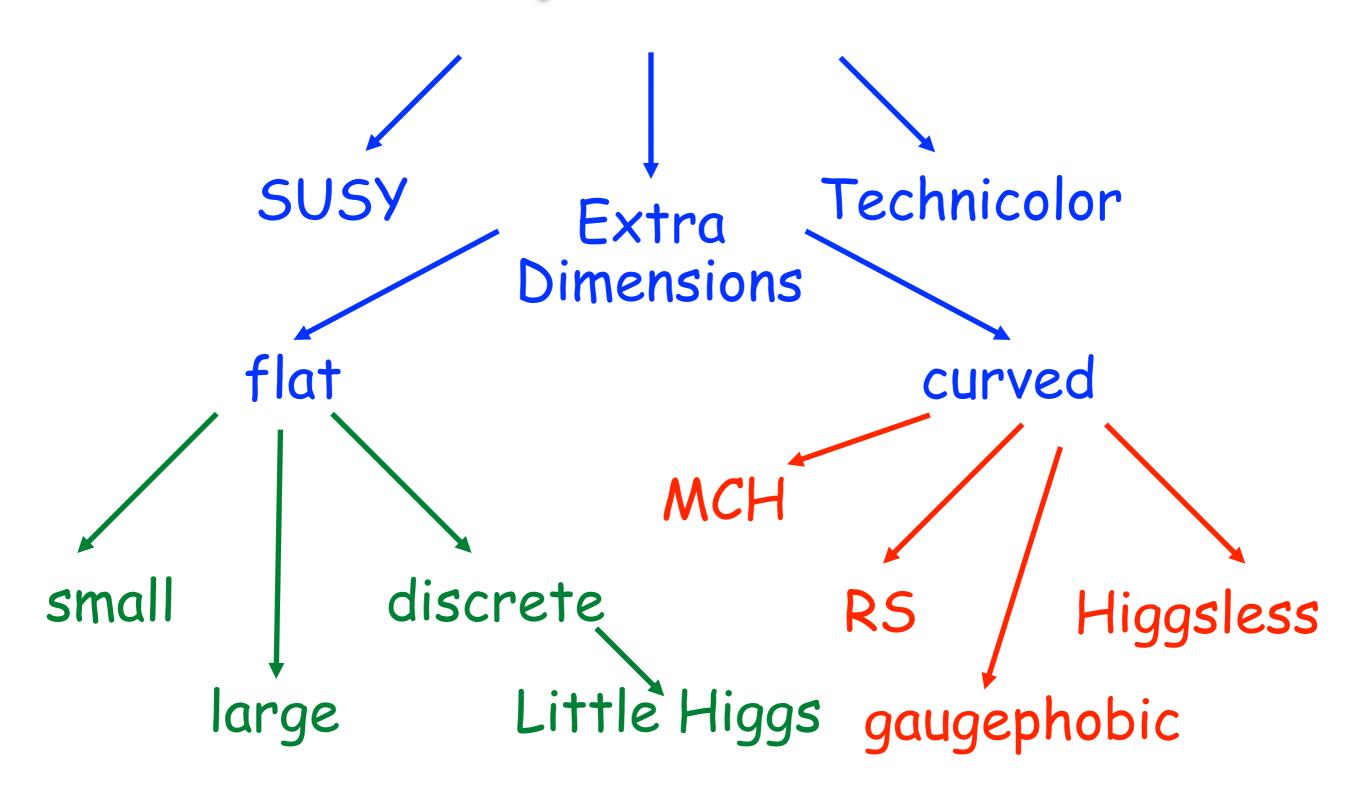
- Motivation
- A Brief History of Monopoles
- * Anomalies
- * Models
- * LHC
- Conclusions



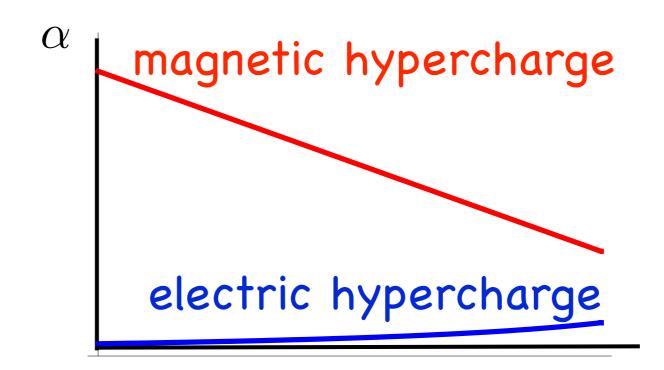






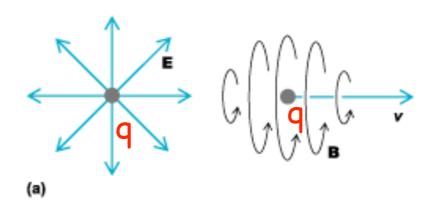


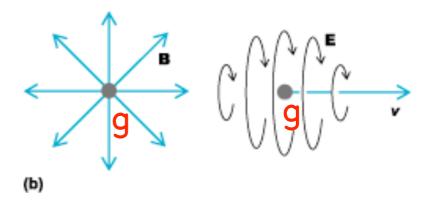
The Vision Thing



 $$\ln \mu$$ consistent theory of massless dyons? chiral symmetry breaking -> EWSB?

J.J. Thomson

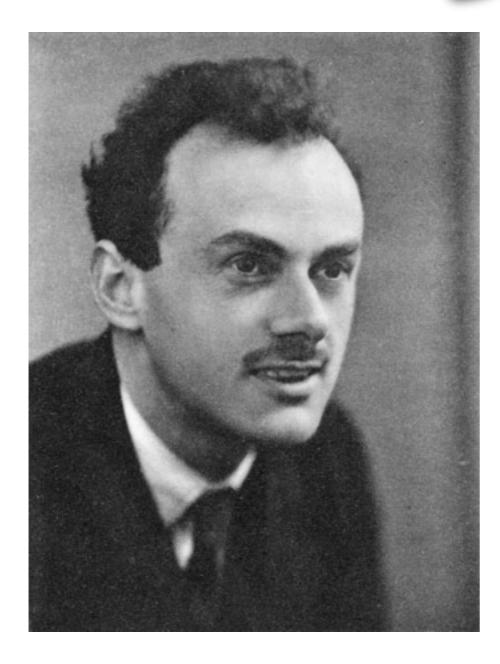




$$J = q g$$

Philos. Mag. 8 (1904) 331

Dirac

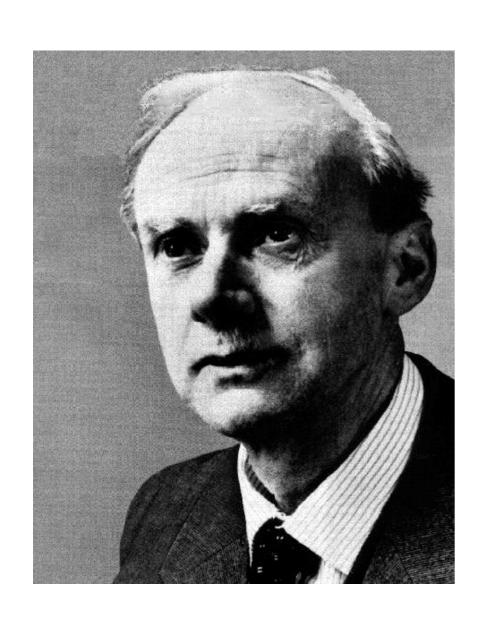


$$q = \frac{n}{2}$$

charge quantization

Proc. Roy. Soc. Lond. A133 (1931) 60

Dirac



non-local action?

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + {}^*G_{\mu\nu}$$

$$G_{\mu\nu}(x) = 4\pi (n \cdot \partial)^{-1} [n_{\mu} *j_{\nu}(x) - n_{\nu} *j_{\mu}(x)]$$

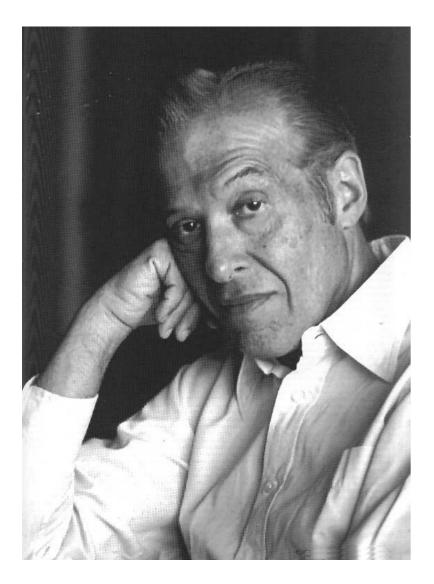
$$= \int (dy) [f_{\mu}(x - y) *j_{\nu}(y) - f_{\nu}(x - y) *j_{\mu}(y)]$$

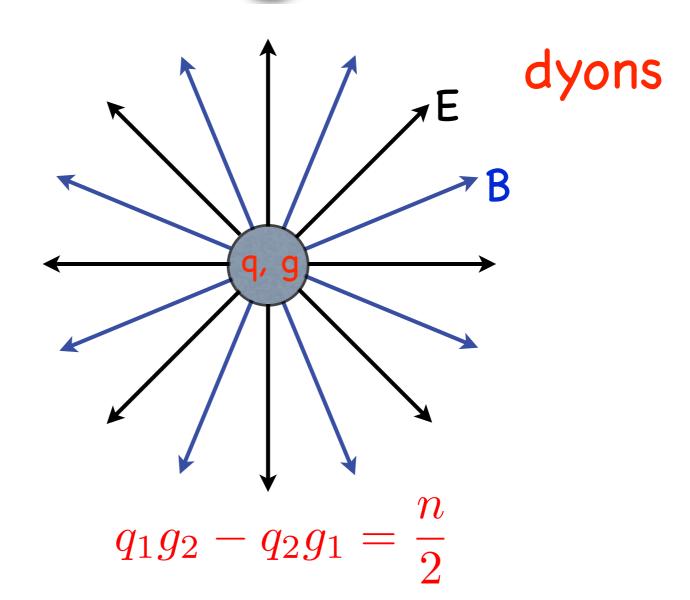
$$\partial_{\mu} f^{\mu}(x) = 4\pi \delta(x)$$

$$f^{\mu}(x) = 4\pi n^{\mu} (n \cdot \partial)^{-1} \delta(x)$$

Phys. Rev. 74 (1948) 817

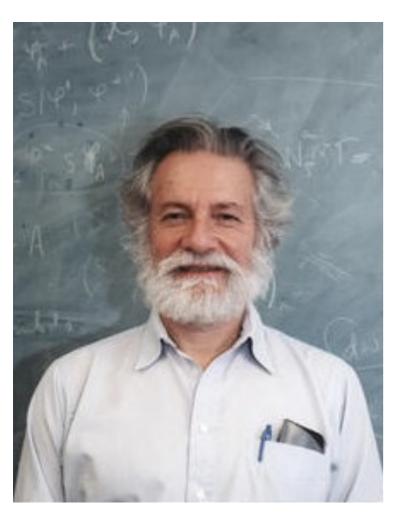
Schwinger





Science 165 (1969) 757

Zwanziger



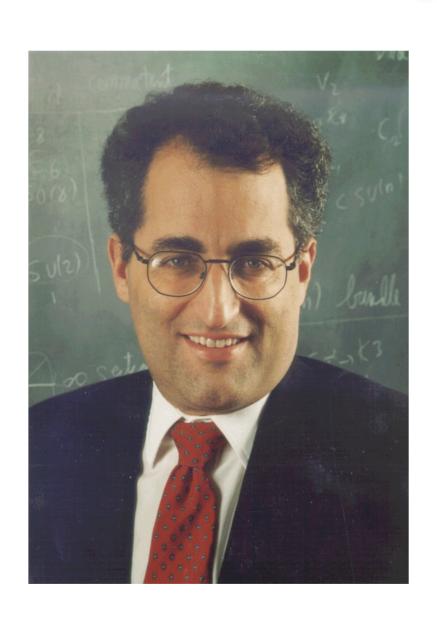
non-Lorentz invariant, local action?

$$\mathcal{L} = -\frac{1}{2n^2e^2} \left\{ \left[n \cdot (\partial \wedge A) \right] \cdot \left[n \cdot^* (\partial \wedge B) \right] - \left[n \cdot (\partial \wedge B) \right] \cdot \left[n \cdot^* (\partial \wedge A) \right] + \left[n \cdot (\partial \wedge A) \right]^2 + \left[n \cdot (\partial \wedge B) \right]^2 \right\} - J \cdot A - \frac{4\pi}{e^2} K \cdot B.$$

$$F = \frac{1}{n^2} \left(\left\{ n \wedge \left[n \cdot (\partial \wedge A) \right] \right\} - * \left\{ n \wedge \left[n \cdot (\partial \wedge B) \right] \right\} \right)$$

Phys. Rev. D3 (1971) 880

Witten



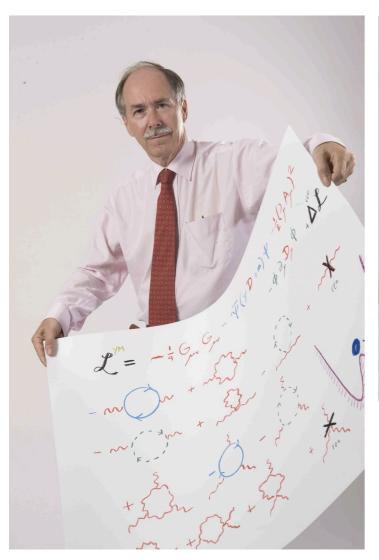
effective charge shifted

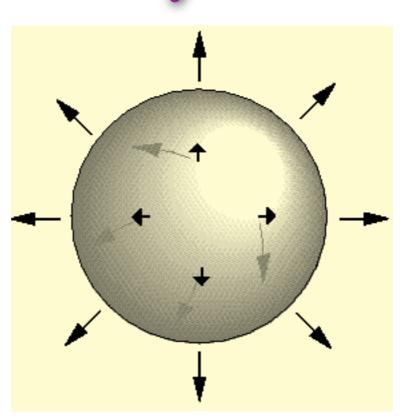
$$\mathcal{L}_{\text{free}} = -\frac{1}{4e^2} F^{\mu\nu} F_{\mu\nu} - \frac{\theta}{32\pi^2} F^{\mu\nu} * F_{\mu\nu}$$

$$q_{\text{eff},j} = q_j + g_j \frac{\theta}{2\pi}$$

Phys. Lett. B86 (1979) 283

't Hooft-Polyakov

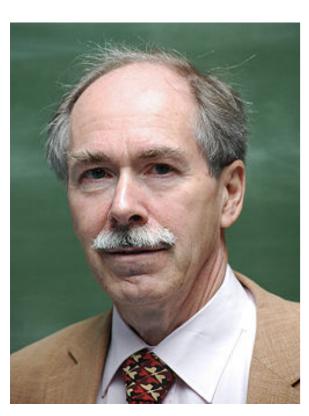




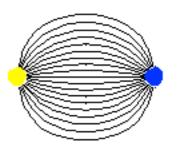
topological monopoles

Nucl. Phys., B79 1974, 276 JETP Lett., 20 1974, 194

't Hooft-Mandelstam

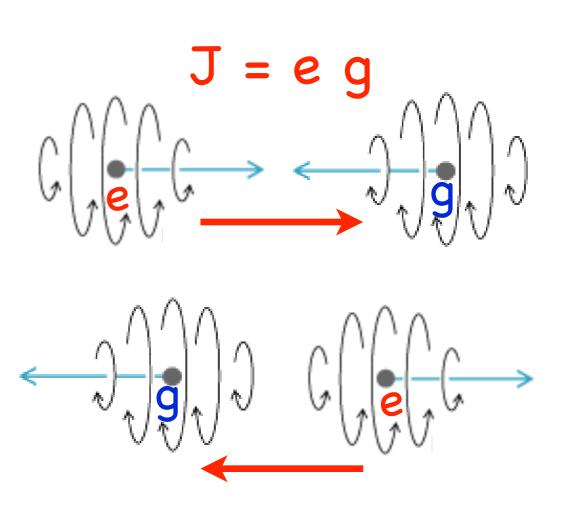


magnetic condensate confines electric charge



High Energy Physics Ed. Zichichi, (1976) 1225 Phys. Rept. 23 (1976) 245

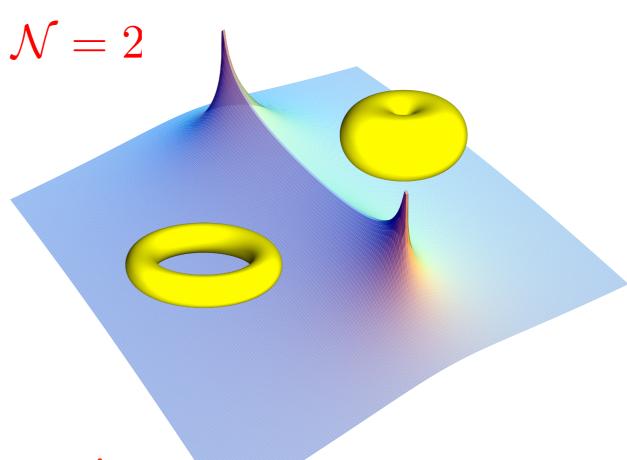
Rubakov-Callan



new unsuppressed contact interactions!

JETP Lett. 33 (1981) 644 Phys. Rev. D25 (1982) 2141

Seiberg-Witten

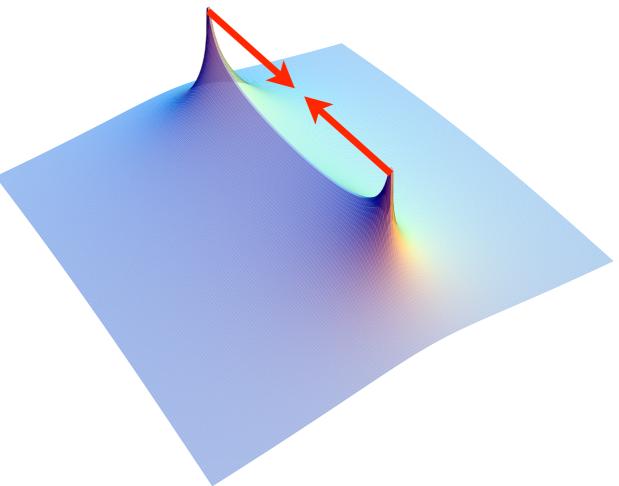


massless fermionic monopoles

hep-th/9407087

Argyres-Douglas





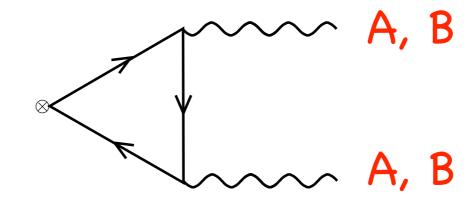
CFT with massless electric and magnetic charges hep-th/9505062

Toy Model

is this anomaly free?

Anomalies

$$\mathcal{L} = -\frac{1}{2n^2e^2} \left\{ \left[n \cdot (\partial \wedge A) \right] \cdot \left[n \cdot^* (\partial \wedge B) \right] - \left[n \cdot (\partial \wedge B) \right] \cdot \left[n \cdot^* (\partial \wedge A) \right] + \left[n \cdot (\partial \wedge A) \right]^2 + \left[n \cdot (\partial \wedge B) \right]^2 \right\} - J \cdot A - \frac{4\pi}{e^2} K \cdot B.$$



E-M Duality

$$\vec{E} \rightarrow \vec{B}$$
 $\vec{B} \rightarrow -\vec{E}$

$$*F^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} F_{\alpha\beta}$$
$$F^{\mu\nu} \to *F^{\mu\nu}$$

Shift Symmetry

$$\mathcal{L}_{\text{free}} = -\frac{1}{4e^2} F^{\mu\nu} F_{\mu\nu} - \frac{\theta}{32\pi^2} F^{\mu\nu} * F_{\mu\nu}$$

$$\theta \to \theta + 2\pi$$

$$\tau \equiv \frac{\theta}{2\pi} + \frac{4\pi i}{e^2}$$

E-M Duality

$$\mathcal{L}_{\text{free}} = -\text{Im}\,\frac{\tau}{32\pi}\left(F^{\mu\nu} + i^*F^{\mu\nu}\right)^2$$

$$\mathcal{L}_c = \frac{1}{4\pi} \int d^4 B_\mu \partial_\nu * F^{\mu\nu}$$

$$\tilde{\mathcal{L}} = \operatorname{Im} \frac{1}{32\pi\tau} \left(\tilde{F}^{\mu\nu} + i^* \tilde{F}^{\mu\nu} \right)^2$$

$$\tilde{F}_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$$

SL(2,Z)

$$au\equiv rac{ heta}{2\pi}+rac{4\pi i}{e^2} \qquad S: au o -rac{1}{ au} \qquad T: au o au+1$$

$$au'=rac{a au+b}{c au+d} \qquad K^\mu o aK'^\mu+cJ'^\mu \ , \quad J^\mu o bK'^\mu+dJ'^\mu$$

$$K^{\mu} \rightarrow aK'^{\mu} + cJ'^{\mu}$$
, $J^{\mu} \rightarrow bK'^{\mu} + dJ'^{\mu}$
$$ad - bc = 1$$

not a symmetry

ß from SL(2,Z)

$$\frac{d\tau}{d\log\mu} = \beta$$

$$\begin{pmatrix} a & -b \\ -c & d \end{pmatrix} \begin{pmatrix} q \\ g \end{pmatrix} = \begin{pmatrix} n \\ 0 \end{pmatrix} \qquad n = \gcd(q, g)$$

$$c = g/n, d = q/n$$
 $aq - bg = n$

$$\frac{d\tau'}{d\log\mu} = i\frac{n^2}{16\pi^2}$$

$$\frac{d\tau}{d\log\mu} = \frac{i}{16\pi^2}(q+g\tau)^2$$

ß from SL(2,Z)

$$\frac{d\tau}{d\log\mu} = \frac{i}{16\pi^2}(q+g\tau)^2$$

$$\beta_{e} = \mu \frac{de}{d\mu} = \frac{e^{3}}{12\pi^{2}} \sum_{j} \left[\left(q_{j} + \frac{\theta}{2\pi} g_{j} \right)^{2} - g_{j}^{2} \frac{16\pi^{2}}{e^{4}} \right]$$

$$\beta_{\theta} = \mu \frac{d\theta}{d\mu} = -\frac{16\pi}{3} \sum_{j} \left[q_{j}g_{j} + \frac{\theta}{2\pi} g_{j}^{2} \right]$$

Argyres, Douglas hep-th/9505062

SL(2,Z)

$$\frac{\operatorname{Im}(\tau)}{4\pi} \,\partial_{\mu} \left(F^{\mu\nu} + i * F^{\mu\nu} \right) = J^{\nu} + \tau K^{\nu}$$

$$K^{\mu} \to aK'^{\mu} + cJ'^{\mu}, J^{\mu} \to bK'^{\mu} + dJ'^{\mu}$$

 $(F^{\mu\nu} + i^*F^{\mu\nu}) \to \frac{1}{c\tau^* + d} (F'^{\mu\nu} + i^*F'^{\mu\nu})$

$$\frac{\text{Im}(\tau')}{4\pi} \,\partial_{\nu} \left(F'^{\mu\nu} + i * F'^{\mu\nu} \right) = J'^{\mu} + \tau' K'^{\mu}$$

Zwanziger Generalized

$$\mathcal{L} = -\operatorname{Im} \frac{\tau}{8\pi n^2} \left\{ \left[n \cdot \partial \wedge (A+iB) \right] \cdot \left[n \cdot \partial \wedge (A-iB) \right] \right\}$$
$$-\operatorname{Re} \frac{\tau}{8\pi n^2} \left\{ \left[n \cdot \partial \wedge (A+iB) \right] \cdot \left[n \cdot^* \partial \wedge (A-iB) \right] \right\}$$
$$+\operatorname{Re} \left[\left(A-iB \right) \cdot \left(J+\tau K \right) \right]$$

$$F = \frac{1}{n^2} \left(\left\{ n \wedge \left[n \cdot (\partial \wedge A) \right] \right\} - * \left\{ n \wedge \left[n \cdot (\partial \wedge B) \right] \right\} \right)$$

$$(A+iB) \to \frac{1}{c\tau^* + d} (A' + iB')$$

Axial Anomaly from SL(2,Z)

$$(q,g) \to (n,0)$$

$$\partial_{\mu} j_A^{\mu}(x) = \frac{n^2}{16\pi^2} F'^{\mu\nu} * F'_{\mu\nu}$$

$$= \frac{n^2}{32\pi^2} \operatorname{Im} (F'^{\mu\nu} + i * F'^{\mu\nu})^2$$

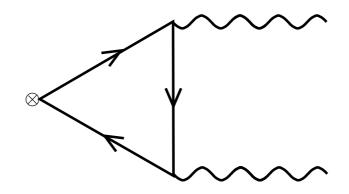
Axial Anomaly

$$\partial_{\mu} j_{A}^{\mu}(x) = \frac{n^{2}}{32\pi^{2}} \operatorname{Im} (c\tau^{*} + d)^{2} (F^{\mu\nu} + i^{*}F^{\mu\nu})^{2}$$

$$= \frac{1}{16\pi^{2}} \operatorname{Re} (q + \tau^{*}g)^{2} F^{\mu\nu} * F_{\mu\nu} + \frac{1}{16\pi^{2}} \operatorname{Im} (q + \tau^{*}g)^{2} F^{\mu\nu} F_{\mu\nu}$$

$$= \frac{1}{16\pi^{2}} \left\{ \left[\left(q + \frac{\theta}{2\pi} g \right)^{2} - g^{2} \frac{16\pi^{2}}{e^{4}} \right] F^{\mu\nu} * F_{\mu\nu} + \left[qg + \frac{\theta}{2\pi} g^{2} \right] F^{\mu\nu} F_{\mu\nu} \right\}$$

Axial Anomaly



$$\partial_{\mu} j_A^{\mu}(x) = \frac{1}{16\pi^2} \left\{ \left[q^2 - g^2 \frac{16\pi^2}{e^4} \right] F^{\mu\nu} * F_{\mu\nu} + qg F^{\mu\nu} F_{\mu\nu} \right\}$$

$SU(N)^2U(1)$ Anomaly

$$\mathcal{L}_{\text{anom}} = c \Omega G^{a\mu\nu} * G^a_{\mu\nu}$$

$$\Omega = \Omega_A + i\,\Omega_B$$

$$\Omega \to \frac{1}{c\tau^* + d} \; \Omega'$$

$SU(N)^2U(1)$ Anomaly

$$\mathcal{L}_{anom} = \frac{n \operatorname{Tr} T^{a}(r) T^{a}(r)}{16\pi^{2}} \Omega'_{A} G^{a\mu\nu} * G^{a}_{\mu\nu}
= \frac{n \operatorname{Tr} T^{a}(r) T^{a}(r)}{16\pi^{2}} \operatorname{Re} \Omega' G^{a\mu\nu} * G^{a}_{\mu\nu}
= \frac{n T(r)}{16\pi^{2}} \operatorname{Re} (c\tau^{*} + d) \Omega G^{a\mu\nu} * G^{a}_{\mu\nu}
= \frac{T(r)}{16\pi^{2}} \left[\left(q + \frac{\theta}{2\pi} g \right) \Omega_{A} + g \frac{4\pi}{e^{2}} \Omega_{B} \right] G^{a\mu\nu} * G^{a}_{\mu\nu}$$

U(1)³ Anomaly

$$\mathcal{L}_{\text{anom}} = \frac{n^3}{16\pi^2} \, \Omega'_A \, F'^{\mu\nu} \, {}^*F'_{\mu\nu} = \frac{n^3}{32\pi^2} \, \text{Re} \left[\Omega' \right] \, \text{Im} \left[\left(F'^{\mu\nu} + i \, {}^*F'_{\mu\nu} \right)^2 \right]$$

$$= \frac{n^3}{32\pi^2} \, \text{Re} \left[\left(c\tau^* + d \right) \Omega \right] \, \text{Im} \left[\left(c\tau^* + d \right)^2 \, \left(F^{\mu\nu} + i \, {}^*F_{\mu\nu} \right)^2 \right]$$

$$= \frac{1}{16\pi^2} \, \left[\left(q + \frac{\theta}{2\pi} g \right)^3 - \left(q + \frac{\theta}{2\pi} g \right) \frac{16\pi^2}{e^4} g^2 \right] \, \Omega_A \, F^{\mu\nu} \, {}^*F_{\mu\nu}$$

$$- \frac{1}{16\pi^2} \, \left[- \left(q + \frac{\theta}{2\pi} g \right)^2 \frac{4\pi}{e^2} g + \frac{64\pi^3}{e^6} g^3 \right] \, \Omega_B \, F^{\mu\nu} \, {}^*F_{\mu\nu}$$

$$- \frac{1}{8\pi^2} \, \left[\left(q + \frac{\theta}{2\pi} g \right)^2 \frac{4\pi}{e^2} g \, \Omega_A + \left(q + \frac{\theta}{2\pi} g \right) \frac{16\pi^2}{e^4} g^2 \, \Omega_B \right] \, F^{\mu\nu} \, F_{\mu\nu}$$

U(1)³ Anomaly

$$\sum_{j} q_{j}^{3} = 0$$

$$\sum_{j} q_{j} g_{j}^{2} = 0$$

$$\sum_{j} q_{j}^{2} g_{j} = 0$$

$$\sum_{j} g_{j}^{3} = 0$$

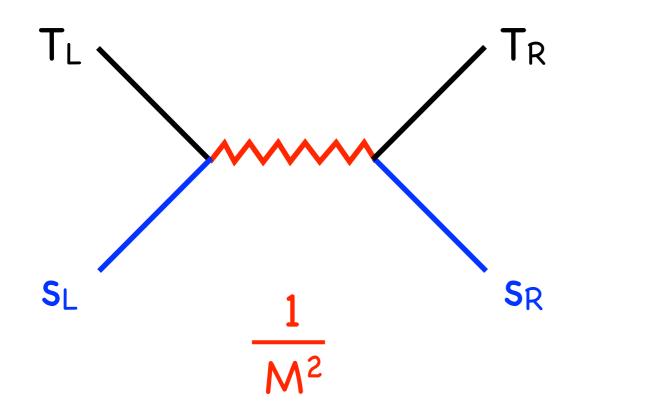
Toy Model

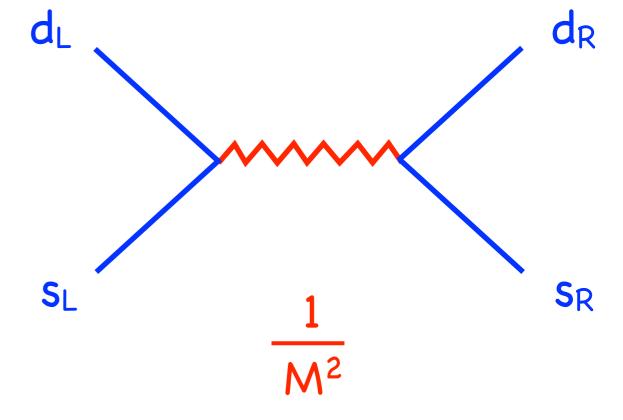
$$\sum_{j} q_{j}^{3} = 0 \; , \quad \sum_{j} g_{j}^{3} = 0 \; , \quad \sum_{j} g_{j}^{2} q_{j} = 0 \; , \quad \sum_{j} q_{j}^{2} g_{j} = 0 \; , \quad \sum_{j} q_{j} = 0 \; , \quad \sum_{j} q_{j} = 0 \; , \quad \sum_{j} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} T_{r_{j}}^{b} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} T_{r_{j}}^{b} q_{j} = 0 \; , \quad \sum_{j} \operatorname{Tr} T_{r_{j}}^{a} T_{r_{j}}^{b} T_$$

Dynamics

Quark Masses

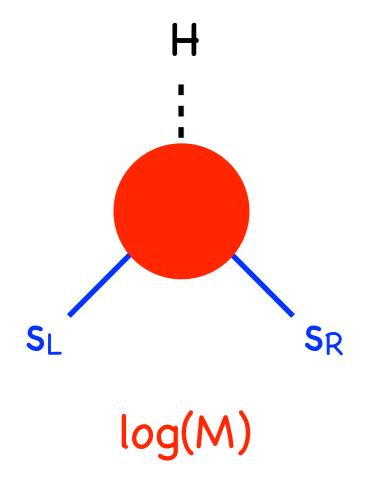
technicolor: fail

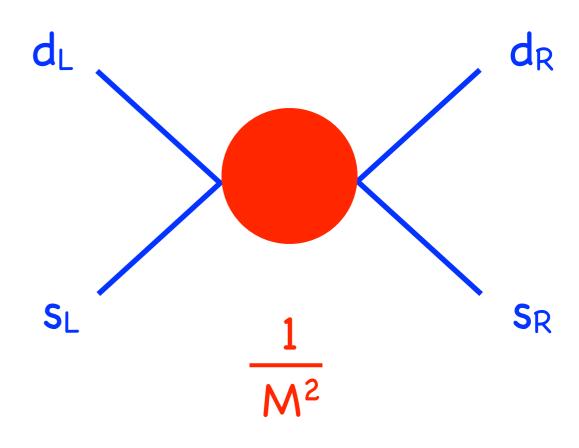




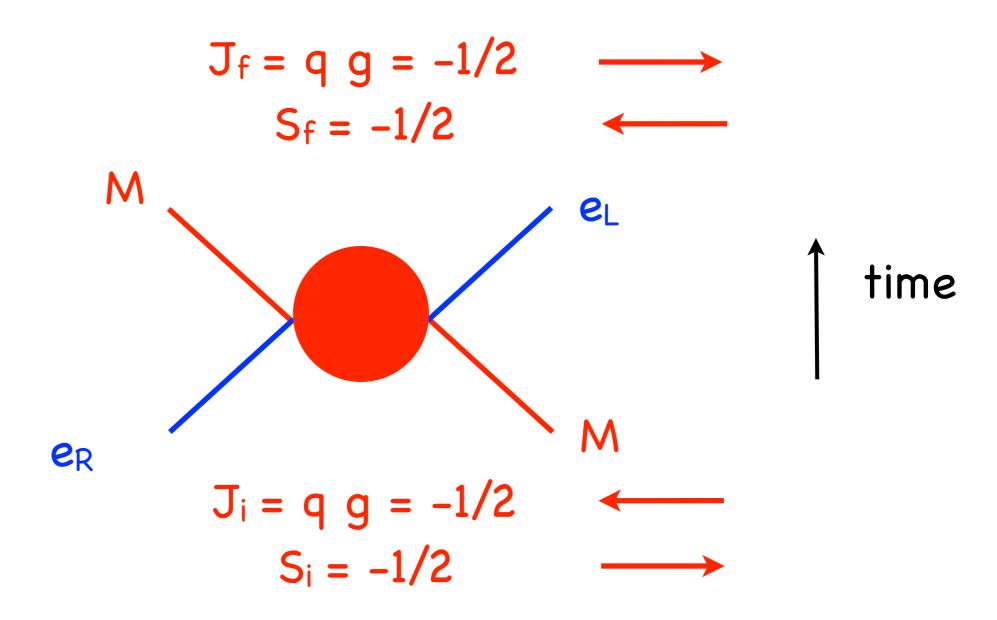
Quark Masses

Standard Model





Callan-Rubakov



New dimension 4, four particle operator

$$J_{f} = q g = 1/2$$

$$S_{f} = -1$$

$$U_{R}$$

$$\uparrow_{L}$$

$$\uparrow_{R}$$

$$U_{L}$$

$$J_{i} = q g = 2$$

$$S_{i} = 1$$

$$\uparrow_{R}$$

$$\downarrow_{L}$$

$$\downarrow_{R}$$

$$J_{f} = q g = 1/2$$

$$S_{f} = -1$$

$$U_{R}$$

$$\uparrow_{L}$$

$$\uparrow_{R}$$

$$U_{L}$$

$$J_{i} = q g = 2$$

$$S_{i} = 1$$

$$fail!$$

$$J_f = q g = 2$$

$$S_f = 0$$

$$U_R \qquad \uparrow_R$$

$$\uparrow_L \qquad \downarrow_U_L$$

$$J_i = q g = 1/2$$

$$S_i = 0$$

$$\uparrow_L \qquad \downarrow_U$$

$$J_f = q g = 2$$

$$S_f = 0$$

$$U_R \qquad \uparrow_R$$

$$\downarrow \qquad \qquad \uparrow_L \qquad \qquad \downarrow_L$$

$$J_i = q g = 1/2$$

$$S_i = 0$$

$$fail!$$

non-Abelian magnetic charge

$$Q = T^3 + Y$$

$$Q_m = T_m^3 + Y_m$$

explicit examples known in GUT models

EWSB is forced to align with the monopole charge

non-Abelian magnetic charge

$$Q = T^3 + Y$$

$$e^{2\pi iQ} = e^{2\pi iT^3} e^{2\pi iY}$$

$$= \operatorname{diag}(e^{i\frac{1}{2}2\pi}, e^{-i\frac{1}{2}2\pi})$$

$$= Z$$

$$(SU(2)_L \times U(1)_Y)/Z_2$$

The Model

 $(SU(3)_c \times SU(2)_L \times U(1)_Y)/Z_6$

	$SU(3)_c$	$U(1)_{em}:q$	$U(1)_{em}:g$	$U(1)_Y:q$	$U(1)_Y:g$
$\overline{U_L}$	d	$\frac{2}{3}$	1	$\frac{1}{6}$	1
D_L	d	$-\frac{1}{3}$	1	$\frac{1}{6}$	1
N_L	1	0	-3	$-\frac{1}{2}$	-3
E_L	1	-1	-3	$-\frac{1}{2}$	-3
U_R	d	$\frac{2}{3}$	1	$\frac{2}{3}^{2}$	1
D_R	d	$-\frac{3}{1}$	1	$-\frac{3}{1}$	1
N_R	1	0	-3	0	-3
E_{R}	1	-1	-3	1	-3

$$\alpha_m = \frac{1}{4\alpha} \approx 32$$

$$J_f = \frac{1}{3} + \frac{2}{3} \cdot 1$$

$$S_f = +1$$

$$U_L \qquad t_R$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \uparrow$$

$$t_L \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$J_i = \frac{1}{3} + \left(\frac{1}{2} + \frac{1}{6}\right) \cdot 1$$

$$S_i = -1$$

$$J_f = \frac{1}{3} + \frac{2}{3} \cdot 1$$

$$S_f = +1$$

$$U_L \qquad \dagger_R$$

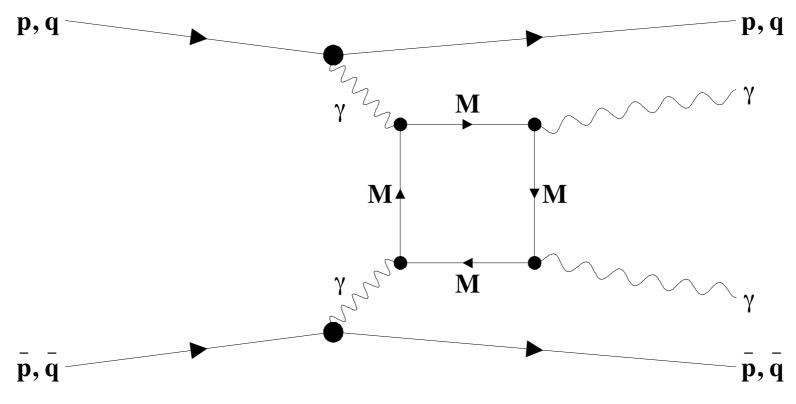
$$\uparrow_L \qquad \downarrow \qquad \downarrow_R$$

$$J_i = \frac{1}{3} + \left(\frac{1}{2} + \frac{1}{6}\right) \cdot 1$$

$$S_i = -1$$

$$hooray!$$

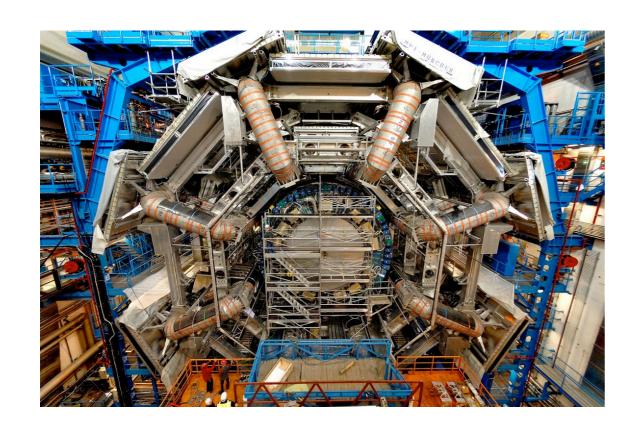
Phenomenology



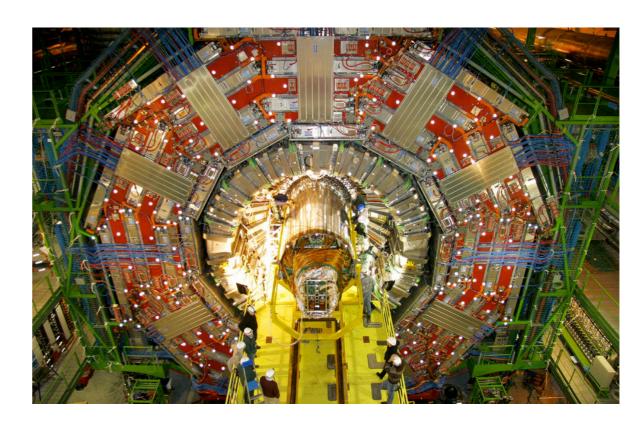
uncontrolled perturbation theory

Ginzburg, Schiller hep-th/9802310

pair production, unconfined, highly ionizing



ATLAS has a trigger for monopoles



CMS does not

Conclusions

Monopoles are still fascinating after all these years

Anomalies for monopoles can be easily calculated

monopoles can break EWS and give the top quark a large mass

the LHC could be very exciting