

Direct Photon Production In Association With A Heavy Quark Jet at Hadron and Ion Colliders Rencontre de Physique des Particules

Tzvetalina Stavreva

LPSC

January 26, 2010

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Introduction	Theory Overview	Tevatron	pp Collisions	pA Collisions	Conclusions

Table of contents

Introduction

Theory Overview

Tevatron

pp Collisions

pA Collisions

Conclusions

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Direct Photons and Heavy Quarks

Direct Photons

- Any photon that is produced during the hard scattering process or via fragmentation
- Escape confinement
- Photon acts as a probe of the hard scattering
- Great for testing PDFs

$\gamma + {\it Q}$ production

- Direct photons are produced in association with many different particles
- Look at one part of the cross section \rightarrow piece with heavy quarks
- Better understand the role of heavy quarks in high p_T collisions
- Possibility to better constrain Parton Distribution Functions of heavy quarks

Leading Order Contributions

Compton Subprocess $g + Q
ightarrow Q + \gamma$

• Leading Order - $\mathcal{O}(\alpha \alpha_s)$ - Only **one** hard-scattering subprocess

Isolation

- Fragmentation contributions are greatly reduced due to isolation requirements
- Helps minimize background from photons coming from the decay of hadrons, e.g. $\pi^0 \to \gamma\gamma$

NLO Contributions

• 2 ightarrow 3 hard-scattering subprocesses - $\mathcal{O}(lpha lpha_s^2)$

 $\begin{array}{l} g+g \rightarrow Q+\bar{Q}+\gamma \\ g+Q \rightarrow g+Q+\gamma \\ Q+q \rightarrow q+Q+\gamma \\ Q+\bar{q} \rightarrow Q+\bar{q}+\gamma \end{array}$

- $\begin{array}{l} Q+Q \rightarrow Q+Q+\gamma \\ Q+\bar{Q} \rightarrow Q+\bar{Q}+\gamma \\ q+\bar{q} \rightarrow Q+\bar{Q}+\gamma \end{array}$
- Also need to include NLO fragmentation contributions convolute all 2 \to 3 $\sim \mathcal{O}(\alpha_s^3)$ with γ FF

Subprocesses and PDFs

- Which subprocess dominates is highly dependent on collider type $(pp, p\bar{p})$ and center of mass energy
- Depending on this is what PDF and what x range can be probed

pp Collisio

pA Collisi

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ④ ● ● ●

Conclusions

Tevatron Predictions

- As $p_{T\gamma}$ increases the difference between LO and NLO grows
- What drives this difference?

Tevatron Predictions

- As $p_{T\gamma}$ increases the difference between LO and NLO grows
- What drives this difference?
- Abundance of q and $\bar{q} \to$ annihilation subprocess dominates $q\bar{q} \to \gamma Q\bar{Q}$

Conclusions

Comparison between theory and data Measurements by DØ Collaboration

- There is really good agreement between data and theory for the bottom cross section
- For charm the data points at large *p*_{Tγ} lie above the theory curve → possible explanation existence of intrinsic charm

Intrinsic Charm

- Even if annihilation process dominates due to the center of mass energies can probe for IC at Tevatron
- Presently assumed that $c(x, \mu = m_c) = 0$, *i.e.* need only knowledge of gluon PDF, $c(x, Q) \sim g(x, Q)$
- Three intrinsic charm models Non-perturbative charm component of the nucleon
 Classical DDE

• For central rapidity $x \sim \frac{2p_T}{\sqrt{5}} \rightarrow$ at higher p_T can test for BHPS model

Comparison between theory and data - IC $c + \gamma$

- With the use of the BHPS PDFs the cross section grows at large $p_{T\gamma}$, but is still below the data
- However if we are to look at the ratio of the c to b cross section ...

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三三 - のへで

Conclusions

LHC at 14 TeV

- At LHC p beams and higher center of mass
- No longer such a difference between LO and NLO

• Due to this there is great sensitivity to gluon and Q PDFs

pA Collision

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ④ ● ● ●

Conclusions

Intrinsic Charm at the LHC

• Due to smaller x probed at the LHC can still test IC, but mainly the Sea-like model

◆□> ◆□> ◆ヨ> ◆ヨ> ○三

pPb collisions at the LHC

• $p_{T\gamma} > 20 \text{ GeV}, p_{TQ} > 15 GeV, |y_{\gamma}| < 0.12, |y_{Q}| < 0.7$

- Not a big difference between NLO and LO \rightarrow check other contributing subprocesses

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

pPb collisions - subprocess contributions

• $p_{T\gamma} > 20 \text{ GeV}, p_{TQ} > 15 \text{GeV}, |y_{\gamma}| < 0.12, |y_{Q}| < 0.7$

- The Compton subprocess dominates
- $\gamma + Q$ great probe of gluon + HQ nuclear PDFs

Introduction Theory Overview

Tevatron

pp Collisions

pA Collisions

Conclusions

$\gamma + \textit{Q}$ and nuclear PDFs

nuclear PDFs

- Give probability of finding a parton with a momentum fraction x in a nucleus
- Needed for heavy ion collisions, at ALICE , RHIC
- Gluon nPDF largely unconstrained

$\gamma + Q$

- Over 80% of the cross section is from g + Q initiated subprocesses
- Can test both g + charm PDF in $\gamma + c$ processes
- If no IC charm all this sensitivity is due to the gluon PDF
- Same in $\gamma + b \rightarrow \text{test g PDF}$

Nuclear Modifications

• Comparison between different nPDF sets for the gluon nuclear modifications $R = \frac{g_{Pb}(x,Q)}{g_p(x,Q)}$

Nuclear Modifications to $\gamma + c$

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ④ ● ● ●

Probes relatively small x

Nuclear Modifications to $\gamma + c \text{ LO}$

 Measurements with appropriate error bars can distinguish between the different nPDFs

Tevatron

pp Collisio

pA Collisions

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ④ ● ● ●

Conclusions

gamma+Q at RHIC

• Preliminary ratios

• At RHIC higher x region is probed

pp Collision

pA Collisions

Conclusions

gamma+Q at RHIC

• Preliminary ratios

• At RHIC higher x region is probed

- At Tevatron energies q ar q dominates the cross section at large $p_{T\gamma}$
- Good distinction between different IC models, can test for BHPS, Sea-like
- At the LHC (pp 14 TeV or pPb) subprocesses with initial gluons and heavy quarks dominate

- Great process for constraining g and Q PDFs
- Can distinguish between different nPDF sets, CTEQ, HKN, EPS
- ALICE and RHIC probe different x regions \rightarrow supplemental information
- Future work predictions for AA collisions