

Study of the Proton Mesonic Content via Backward Hard Exclusive Processes

J.P. Lansberg Centre de Physique Théorique – Ecole Polytechnique

Rencontre de Physique des Particules 2010 IPNL, Lyon

Collaborative work with S.J. Brodsky, B. Pasquini, B. Pire and L. Szymanowski

J.P. Lansberg (CPHT – Ecole Polytechnique)

Backward Hard Exclusive Processes

January 27, 2010 1 / 20

Part I

The usual tools to study the proton (structure): form factors and (generalised) parton distributions

J.P. Lansberg (CPHT – Ecole Polytechnique) Backward Hard Exclusive Processes

The proton as a whole ...

- Static properties of the proton (seen from far away):
 - Charge: +1
 - Mass: M_p
 - Anomalous Magnetic Moment: $\mu_p=2.79$

くほと くほと くほと

The proton as a whole ...

- Static properties of the proton (seen from far away):
 - Charge: +1
 - Mass: M_p
 - Anomalous Magnetic Moment: μ_p=2.79
- Simplest dynamical object: Form factors

$$\Gamma_{\mu}(\boldsymbol{q}) = \boldsymbol{F}_{1}(\boldsymbol{q}^{2})\gamma_{\mu} + \frac{i}{2M_{p}}\boldsymbol{F}_{2}(\boldsymbol{q}^{2})\sigma_{\mu\nu}\boldsymbol{q}^{\nu}$$

"How a proton absorbs a photon and stays intact" (Elastic scattering)

3

The proton as a whole ...

- Static properties of the proton (seen from far away):
 - Charge: +1
 - Mass: M_p
 - Anomalous Magnetic Moment: $\mu_p=2.79$
- Simplest dynamical object: Form factors

$$\Gamma_{\mu}(q) = F_1(q^2)\gamma_{\mu} + \frac{i}{2M_p}F_2(q^2)\sigma_{\mu\nu}q^{\nu}$$

"How a proton absorbs a photon and stays intact" (Elastic scattering)

- Static limit:
 - $F_1(0) = +1$: its charge
 - $F_2(0) = \mu_p 1$

過 ト イヨ ト イヨト

Study of the proton content via (deeply) inelastic scattering (DIS):

$$egin{aligned} W_{\mu
u} &= (-g_{\mu
u} + rac{q_{\mu}q_{
u}}{q^2})F_1(x,q^2) \ &+ rac{\mathcal{P}_{\mu}\mathcal{P}_{
u}}{P.q}F_2(x,q^2) \end{aligned}$$

 $\mathcal{P} = \mathcal{P}_{\mu} - \frac{\mathcal{P} \cdot q}{q^2} q_{\mu}$

Study of the proton content via (deeply) inelastic scattering (DIS):

Factorisation in the Bjorken limit: $Q^2 \to \infty$, x fixed

4 / 20

Study of the proton content via (deeply) inelastic scattering (DIS):

 \blacksquare Factorisation in the Bjorken limit: $Q^2 \to \infty$, x fixed

Probability Distribution, since being an amplitude squared

Sum over spect.

Study of the proton content via (deeply) inelastic scattering (DIS):

- \blacksquare Factorisation in the Bjorken limit: $Q^2 \to \infty$, x fixed
- → Probability Distribution, since being an amplitude squared

Sum over spect.

Probability to find a parton with a momentum fraction x: q(x) $F_2(x, q^2) = x \sum_{q} e_q^2 q(x, q^2)$

- Study of interferences in the proton

via Deeply Virtual Compton Scattering (DVCS):

- Study of interferences in the proton

via Deeply Virtual Compton Scattering (DVCS):

For $Q^2 \gg t$, described in terms of 4 generalised parton distribution: GPDs

- Study of interferences in the proton

For $Q^2 \gg t$, described in terms of 4 generalised parton distribution: GPDs

idem for meson electroproduction

J.P. Lansberg (CPHT – Ecole Polytechnique) Backward Hard

- Study of interferences in the proton

For $Q^2 \gg t$, described in terms of 4 generalised parton distribution: GPDs

➡ Factorisation in the generalised Bjorken limit: $Q^2 \rightarrow \infty$, t,x fixed

→ Study of interferences in the proton

For $Q^2 \gg t$, described in terms of 4 generalised parton distribution: GPDs

→ Factorisation in the generalised Bjorken limit: $Q^2 \rightarrow \infty$, t, x fixed → The GPDs are not probability distributions

J.P. Lansberg (CPHT – Ecole Polytechnique)

January 27, 2010 5 / 20

→ Study of interferences in the proton

 P^{2} Pert. x' factorisation W^{2} For $Q^{2} \gg t$, described in terms of 4 generalised parton distribution: GPDs

→ Factorisation in the generalised Bjorken limit: $Q^2 \rightarrow \infty$, t, x fixed → The GPDs are not probability distributions

→ Interpretration only at the amplitude level

Amplitude of probability

for a proton to emit a quark with x & to absorb another with x'

J.P. Lansberg (CPHT – Ecole Polytechnique)

Backward Hard Exclusive Processes

January 27, 2010 5 / 20

Part II

A new look at the proton (structure): backward exclusive processes

J.P. Lansberg (CPHT – Ecole Polytechnique) Backwa

Backward Hard Exclusive Processes

January 27, 2010 6 / 20

- Let us analyse the Hard Electroproduction of a meson

J.P. Lansberg (CPHT – Ecole Polytechnique) Backward Hard Exclusive Processes

- Let us analyse the Hard Electroproduction of a meson

- Let us analyse the Hard Electroproduction of a meson

- \blacksquare The kinematics imposes the exchange of 3 quarks in the *u* channel
- **—** Factorisation in the generalised Bjorken limit: $Q^2 \rightarrow \infty$, u, x fixed

B. Pire, L. Szymanowski, PLB 622:83,2005.

- Let us analyse the Hard Electroproduction of a meson

- \blacksquare The kinematics imposes the exchange of 3 quarks in the *u* channel
- → Factorisation in the generalised Bjorken limit: $Q^2 \rightarrow \infty$, u, x fixed

B. Pire, L. Szymanowski, PLB 622:83,2005.

- The object factorised from the hard part is a Transition Distribution

Amplitude (TDA)

J.P. Lansberg (CPHT – Ecole Polytechnique

- Let us analyse the Hard Electroproduction of a meson

- \blacksquare The kinematics imposes the exchange of 3 quarks in the *u* channel
- → Factorisation in the generalised Bjorken limit: $Q^2 \rightarrow \infty$, u, x fixed

B. Pire, L. Szymanowski, PLB 622:83,2005.

- The object factorised from the hard part is a Transition Distribution

Amplitude (TDA)

→ Interpretation at the amplitude level (for $x_i > 0$) Amplitude of probability to find a meson within the proton !

J.P. Lansberg (CPHT – Ecole Polytechnique)

Backward Hard Exclusive Processes

January 27, 2010 7 / 20

More quantitatively: the pionic content of the proton

JPL, B. Pire, L. Szymanowski, PRD 75:074004, 2007

- Using the soft pion theorem, one may write

 $\langle \pi^{a}(k) | \mathcal{O} | p(p,s) \rangle = -\frac{i}{f_{\pi}} \langle 0 | [Q_{5}^{a}, \mathcal{O}] | p(p,s) \rangle$ $+ \frac{ig_{A}}{4f_{\pi}p \cdot k} \sum_{s'} \langle 0 | \mathcal{O} | p(p,s') \rangle \overline{u}(p,s') \not k \gamma_{5} \tau^{a} u(p,s)$

More quantitatively: the pionic content of the proton

JPL, B. Pire, L. Szymanowski, PRD 75:074004, 2007

→ Using the soft pion theorem, one may write $\langle \pi^{a}(k) | \mathcal{O} | p(p,s) \rangle = -\frac{i}{f_{\pi}} \langle 0 | [Q_{5}^{a}, \mathcal{O}] | p(p,s) \rangle$ $+ \frac{ig_{A}}{4f_{\pi}p \cdot k} \sum_{s'} \langle 0 | \mathcal{O} | p(p,s') \rangle \overline{u}(p,s') \not k \gamma_{5} \tau^{a} u(p,s)$ proton $\downarrow \qquad x_{2}$ $\downarrow \qquad x_{3}$ the proton wavefunction (DAs), $\langle 0 | \mathcal{O} | p(p,s) \rangle$

J.P. Lansberg (CPHT – Ecole Polytechnique

More quantitatively: the pionic content of the proton

JPL, B. Pire, L. Szymanowski, PRD 75:074004, 2007

→ Using the soft pion theorem, one may write $\langle \pi^{a}(k) | \mathcal{O} | p(p,s) \rangle = -\frac{i}{f_{\pi}} \langle 0 | [Q_{5}^{a}, \mathcal{O}] | p(p,s) \rangle$ $+ \frac{ig_{A}}{4f_{\pi}p \cdot k} \sum_{s'} \langle 0 | \mathcal{O} | p(p,s') \rangle \overline{u}(p,s') / x_{5} \tau^{a} u(p,s)$ proton proton The proton wavefunction (DAs), $\langle 0 | \mathcal{O} | p(p,s) \rangle$

→ Can also be computed using e.g. the pion cloud model (not only for $p_{\pi} \rightarrow 0$ then) B. Pasquini, et al. PRD 80:014017,2009.

J.P. Lansberg (CPHT – Ecole Polytechnique)

Backward electroproduction of a pion

 \blacksquare First study of backward electroproduction of a pion for $p_{\pi} \rightarrow 0$

JPL, B. Pire, L. Szymanowski, PRD 75:074004, 2007

Backward electroproduction of a pion

 \blacksquare First study of backward electroproduction of a pion for $p_{\pi} \rightarrow 0$

JPL, B. Pire, L. Szymanowski, PRD 75:074004, 2007

 \twoheadrightarrow To be compared with the pion cloud model and extended to $\Delta_{\mathcal{T}} \neq 0$

JPL, B. Pasquini, B. Pire, L. Szymanowski, in progress

Backward electroproduction of a pion

Hard part: M_h for $\gamma^* p \rightarrow p \pi^0$ at $\Delta_T = 0$

J.P. Lansberg (CPHT – Ecole Polytechnique)

Backward Hard Exclusive Processes

January 27, 2010 10 / 20

Backward Electroproduction of a pion: II

JPL, B. Pire, L. Szymanowski, PRD 75:074004,2007

(日) (周) (三) (三)

3

11 / 20

→ The amplitude at the Leading-twist accuracy:

$$\mathcal{M}_{s_{1}s_{2}}^{\lambda} = -i\frac{(4\pi\alpha_{s})^{2}\sqrt{4\pi\alpha_{em}}f_{N}^{2}}{54f_{\pi}Q^{4}}\bar{u}(p_{2},s_{2})\not(\lambda)\gamma^{5}u(p_{1},s_{1})$$
$$\times \int_{-1+\xi}^{1+\xi} d^{3}x\int_{0}^{1} d^{3}y\left(2\sum_{\alpha=1}^{7}T_{\alpha}+\sum_{\alpha=8}^{14}T_{\alpha}\right)$$

Backward Electroproduction of a pion: II

JPL, B. Pire, L. Szymanowski, PRD 75:074004,2007

→ The amplitude at the Leading-twist accuracy:

Backward Electroproduction of a pion: III

Backward Electroproduction of a pion: III

 \blacksquare Data from JLab exist for the π

Analysis on-going

To be modelled

- \implies "Visible peak in the yield of ω at 180°" (G. Huber (JLab, Hall C), Sept. 2009)
- \rightarrow Data for the electroduction of η
- We are working on the theory $(\Delta_T \neq 0, \text{ DGLAP-region contribution, other models, }...)$

TDAs in exclusive processes at GSI/FAIR

 $ightarrow p
ightarrow \pi$ TDAs can be studied in $\bar{p}p
ightarrow \gamma^{\star}{}_{(Q^2)}\pi^0
ightarrow \ell^+ \ell^- \pi^0$

JPL, B. Pire, L. Szymanowski PRD76 :111502(R),2007

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

TDAs in exclusive processes at GSI/FAIR

 $\implies p \to \pi$ TDAs can be studied in $\bar{p}p \to \gamma^{\star}{}_{(q^2)}\pi^0 \to \ell^+ \ell^- \pi^0$

J.P. Lansberg (CPHT – Ecole Polytechnique)

January 27, 2010

13 / 20

3

TDAs in exclusive processes at GSI/FAIR

 $ightarrow p
ightarrow \pi$ TDAs can be studied in $\bar{p}p
ightarrow \gamma^{\star}{}_{(q^2)}\pi^0
ightarrow \ell^+ \ell^- \pi^0$

- Strictly the same TDAs as for electroproduction (JLab)
- ➡ Planned to be done with the proton FF studies in the timelike region

Physics Performance Report for PANDA, 0903.3905 [hep-ex]

 \rightarrow Protons can contain nonperturbative fluctuations of charm quarks $c\bar{c}$

S.J. Brodsky et al. PLB93:451-455,1980

→ Protons can contain nonperturbative fluctuations of charm quarks cc̄

 $\mu = 1.3 \rightarrow 100 \; {\rm GeV}$

J.Pumplin et al. PRD75:054029,2007.

J.P. Lansberg (CPHT – Ecole Polytechnique) Backward Hard Exclusive Processes January 27, 2010 14 / 20

 $\mu = 1.3 \rightarrow 100 \,\, {\rm GeV}$

J.Pumplin et al. PRD75:054029,2007.

 \blacksquare Potential significant source of inclusive J/ψ at RHIC via $gc \rightarrow J/\psi c$

S.J Brodsky, J.P.L , arXiv:0908.0754 [hep-ph]

 $\mu = 1.3 \rightarrow 100 \,\, {\rm GeV}$

J.Pumplin et al. PRD75:054029,2007.

 \blacksquare Potential significant source of inclusive J/ψ at RHIC via $gc \rightarrow J/\psi c$

S.J Brodsky, J.P.L , arXiv:0908.0754 [hep-ph] $\rightarrow b\bar{b}$ et $t\bar{t}$ also possible but suppressed as M_Q^{-2} , could be uncovered in diffractive Higgs production e.g. S.J Brodsky *et al.*, PRD73:113005,2006

 $\mu = 1.3 \rightarrow 100 \,\, {\rm GeV}$

 \blacksquare Potential significant source of inclusive J/ψ at RHIC via $gc \rightarrow J/\psi c$

S.J Brodsky, J.P.L , arXiv:0908.0754 [hep-ph] $\rightarrow b\bar{b}$ et $t\bar{t}$ also possible but suppressed as M_Q^{-2} , could be uncovered in diffractive Higgs production \rightarrow Dedicated test: $\gamma^* p \rightarrow p J/\psi$ with sufficient W^2 S.J. Brodsky, JPL, work in progress

J.P. Lansberg (CPHT – Ecole Polytechnique)

J.Pumplin et al. PRD75:054029,2007.

S.J. Brodsky, JPL, work in progress

→ Modelling the proton to charmonium TDA (pseudoscalar case)

3

∃ → (∃ →

< (T) > <

S.J. Brodsky, JPL, work in progress

- Modelling the proton to charmonium TDA (pseudoscalar case)
 - \rightarrow "SU(4)" spin-flavour symmetry: only one TDA

$$V^{p o Q} = T^{p o Q} \quad A^{p o Q} = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

S.J. Brodsky, JPL, work in progress

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

- → Modelling the proton to charmonium TDA (pseudoscalar case)
 - \rightarrow "SU(4)" spin-flavour symmetry: only one TDA

 $V^{p \to Q} = T^{p \to Q} \quad A^{p \to Q} = 0$

→ Non-relativistic approx for $Q\bar{Q}$: Charmonium DA $\propto f_Q \delta(x_{\bar{c}} - x_c)$ $(x_c + x_{\bar{c}} = x_Q)$

S.J. Brodsky, JPL, work in progress

- Modelling the proton to charmonium TDA (pseudoscalar case)
 - \rightarrow "SU(4)" spin-flavour symmetry: only one TDA

$$V^{p \to Q} = T^{p \to Q} \quad A^{p \to Q} = 0$$

→ Non-relativistic approx for $Q\bar{Q}$: Charmonium DA $\propto f_Q \delta(x_{\bar{c}} - x_c)$ $(x_c + x_{\bar{c}} = x_Q)$

 \rightarrow Light cone inspired form for the 5 particle IC Fock State

$$\psi(x_1, x_2, x_3, x_c, x_{\bar{c}}, Q^2) = \delta(1 - \sum_i x_i) \frac{\Gamma}{(m_p^2 - \hat{m}_c^2(\frac{1}{x_c} + \frac{1}{x_{\bar{c}}}) - \hat{m}_q^2(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}))}$$
(1)

(Effective masses (from the k_T integration) $\hat{m}_c^2 \simeq 1.8$ GeV, $\hat{m}_a^2 \simeq 0.45$ GeV) \rightarrow Only in ERBL region ($x_i > 0$)

15 / 20

S.J. Brodsky, JPL, work in progress

- Modelling the proton to charmonium TDA (pseudoscalar case)
 - \rightarrow "SU(4)" spin-flavour symmetry: only one TDA

$$V^{p \to Q} = T^{p \to Q} \quad A^{p \to Q} = 0$$

- → Non-relativistic approx for $Q\bar{Q}$: Charmonium DA $\propto f_Q \delta(x_{\bar{c}} x_c)$ $(x_c + x_{\bar{c}} = x_Q)$
- \rightarrow Light cone inspired form for the 5 particle IC Fock State

$$\psi(x_1, x_2, x_3, x_c, x_{\bar{c}}, Q^2) = \delta(1 - \sum_i x_i) \frac{\Gamma}{(m_p^2 - \hat{m}_c^2(\frac{1}{x_c} + \frac{1}{x_{\bar{c}}}) - \hat{m}_q^2(\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}))}$$
(1)

(Effective masses (from the k_T integration) $\hat{m}_c^2 \simeq 1.8$ GeV, $\hat{m}_a^2 \simeq 0.45$ GeV) \rightarrow Only in ERBL region ($x_i > 0$)

→ Stay tuned !

J.P. Lansberg (CPHT – Ecole Polytechnique)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで January 27, 2010

15 / 20

Part III

Perspectives

J.P. Lansberg (CPHT – Ecole Polytechnique) Back

Backward Hard Exclusive Processes

January 27, 2010

3

16 / 20

<ロ> (日) (日) (日) (日) (日)

Perspectives

- → Further quantitative predictions require models
 - ➡ Soft pion limit, pion cloud model: OK
 - → 4-ple distribution (spectral representation: double distr. for GPD):

to be done

17 / 20

過 ト イヨ ト イヨト

➡ TDA moments can be computed on the lattice
 ➡ etc.

Perspectives

- → Further quantitative predictions require models
 - ➡ Soft pion limit, pion cloud model: OK
 - → 4-ple distribution (spectral representation: double distr. for GPD):

to be done

글 > - + 글 >

- ➡ TDA moments can be computed on the lattice
 ➡ etc.
- → Experimental data are necessary to test the picture (scaling) and then to extract physics

Perspectives

- \rightarrow Further quantitative predictions require models
 - → Soft pion limit, pion cloud model: OK
 - → 4-ple distribution (spectral representation: double distr. for GPD):

to be done

- TDA moments can be computed on the lattice m etc.
- \rightarrow Experimental data are necessary to test the picture (scaling) and then to extract physics
- \rightarrow ...expected from
- \rightarrow JLab-6 GeV: Backward electroproduction of π , η , ω
- \implies GSI: $p\bar{p} \rightarrow \gamma^{\star}\pi^{0}$, $p\bar{p} \rightarrow J/\psi\pi^{0}$, $p\bar{p} \rightarrow \gamma^{\star}\gamma$, ...
- → JLab-12 GeV: e.g. DVCS on pion
- \implies *B*-factories ($\gamma^* \gamma \rightarrow MM$) possible: TDA $\gamma \rightarrow M$
- \rightarrow COMPASS (?): $\gamma^* p \rightarrow pJ/\psi$

Part IV

Back-up

J.P. Lansberg (CPHT – Ecole Polytechnique) Backw

Backward Hard Exclusive Processes

January 27, 2010

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

18 / 20

3

 $\stackrel{\checkmark}{\longrightarrow} p \to \pi \text{ (at Leading twist)}$ $\stackrel{\Longrightarrow}{\longrightarrow} \Delta_{T} = 0: 3 \text{ TDAs } (3 \times p(\uparrow) \to uud(\uparrow\uparrow\downarrow) + \pi) \text{ DA (Chernyak-Zhitnitsky)}$ $4\langle \pi^{0} | \epsilon^{ijk} u^{i}_{\alpha}(z_{1}n) u^{j}_{\beta}(z_{2}n) d^{k}_{\gamma}(z_{3}n) | p, s_{p} \rangle \propto 4\langle 0 | \epsilon^{ijk} u^{i}_{\alpha}(z_{1}n) u^{j}_{\beta}(z_{2}n) d^{k}_{\gamma}(z_{3}n) | p \rangle \propto$ $\begin{bmatrix} V_{1}^{\pi^{0}}(x_{i}, \xi, \Delta^{2})(\not{p} C)_{\alpha\beta}(N^{s}_{p})\gamma + \\ A^{\pi^{0}}_{1}(x_{i}, \xi, \Delta^{2})(\not{p} \gamma^{5} C)_{\alpha\beta}(\gamma^{5}N^{+}_{s_{p}})\gamma + \\ T^{\pi^{0}}_{1}(x_{i}, \xi, \Delta^{2})(\sigma_{\rho p} C)_{\alpha\beta}(\gamma^{\rho}N^{+}_{s_{p}})\gamma \end{bmatrix}$ $T(x_{i})(i\sigma_{\rho p} C)_{\alpha\beta}(\gamma^{\rho}\gamma^{5}N^{+}_{s_{p}})\gamma \end{bmatrix}$

 $\Rightarrow p \rightarrow \pi$ (at Leading twist) $\rightarrow \Delta_T = 0: 3 \text{ TDAs } (3 \times p(\uparrow) \rightarrow uud(\uparrow\uparrow\downarrow) + \pi)$ DA (Chernvak-Zhitnitsky) TDA $4\langle \pi^0 | \epsilon^{ijk} u^i_{\alpha}(z_1n) u^j_{\beta}(z_2n) d^k_{\gamma}(z_3n) | p, s_p \rangle \propto$ $4\langle 0|\epsilon^{ijk}u^i_{lpha}(z_1n)u^j_{eta}(z_2n)d^k_{\gamma}(z_3n)|p
angle\propto$ $\left[V_1^{\pi^0}(x_i,\xi,\Delta^2)(\not D C)_{\alpha\beta}(N_{s_n}^+)\gamma+\right]$ $|V(x_i)(pC)_{\alpha\beta}(\gamma^5 N_{s_n}^+)_{\gamma}+$ $A_1^{\pi^0}(x_i,\xi,\Delta^2)(\not p\gamma^5 C)_{\alpha\beta}(\gamma^5 N_{s_n}^+)_{\gamma}+$ $A(x_i)(\not p\gamma^5 C)_{\alpha\beta}(N_{s_p}^+)_{\gamma} +$ $T(x_i)(i\sigma_{\rho\rho} C)_{\alpha\beta}(\gamma^{\rho}\gamma^5 N_{5n}^+)_{\gamma}$ $T_1^{\pi^0}(x_i,\xi,\Delta^2)(\sigma_{\rho\rho}C)_{\alpha\beta}(\gamma^{\rho}N_{5n}^+)_{\gamma}$ $V_1^{\pi^0} o D_{\uparrow\downarrow,\uparrow}^{\uparrow} + D_{\downarrow\uparrow,\uparrow}^{\uparrow}$ B. Pasquini et al. $A_1^{\pi^0} o D_{\uparrow\downarrow\uparrow\uparrow}^{\uparrow^{*,\circ}} - D_{\downarrow\uparrow\uparrow\uparrow}^{\uparrow}$ $T_1^{\pi^0} \rightarrow D_{\uparrow\uparrow\uparrow}^{\uparrow}$

J.P. Lansberg (CPHT – Ecole Polytechnique

Backward Hard Exclusive Processes

→ ▲ ■ → ▲ ■ → ■ → へへつ January 27, 2010 19 / 20

••• $\Delta_T \neq 0$: 8 TDAs $(\frac{1}{2} \times 2 \times (2 \times 2 \times 2) \times 1)$

$$\begin{aligned} 4\langle \pi^{0}(p_{\pi})|\,\epsilon^{ijk}u_{\alpha}^{i}(z_{1}n)u_{\beta}^{j}(z_{2}n)d_{\gamma}^{k}(z_{3}n)\,|p(p_{1},s)\rangle &= \frac{if_{N}}{f_{\pi}} \times \\ & \left[V_{1}^{\pi^{0}}(x_{i},\xi,\Delta^{2})(p\,C)_{\alpha\beta}(N^{+})_{\gamma} + V_{2}^{\pi^{0}}(x_{i},\xi,\Delta^{2})(p\,C)_{\alpha\beta}(\not{\Delta}_{T}N^{+})_{\gamma} \right. \\ & \left. + A_{1}^{\pi^{0}}(x_{i},\xi,\Delta^{2})(p\,\gamma^{5}C)_{\alpha\beta}(\gamma^{5}N^{+})_{\gamma} + A_{2}^{\pi^{0}}(x_{i},\xi,\Delta^{2})(p\,\gamma^{5}C)_{\alpha\beta}(\gamma^{5}\not{\Delta}_{T}N^{+})_{\gamma} \right. \\ & \left. + T_{1}^{\pi^{0}}(x_{i},\xi,\Delta^{2})(\sigma_{\mu\mu}C)_{\alpha\beta}(\gamma^{\mu}N^{+})_{\gamma} + T_{2}^{\pi^{0}}(x_{i},\xi,\Delta^{2})(\sigma_{\mu\Delta_{T}}C)_{\alpha\beta}(N^{+})_{\gamma} \right. \\ & \left. + T_{3}^{\pi^{0}}(x_{i},\xi,\Delta^{2})(\sigma_{\mu\mu}C)_{\alpha\beta}(\sigma^{\mu\Delta_{T}}N^{+})_{\gamma} + T_{4}^{\pi^{0}}(x_{i},\xi,\Delta^{2})(\sigma_{\mu\Delta_{T}}C)_{\alpha\beta}(\not{\Delta}_{T}N^{+})_{\gamma} \right] \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

20 / 20

J.P. Lansberg (CPHT – Ecole Polytechnique) Backward Hard Exclusive Processes January 27, 2010

→ $\Delta_T \neq 0$: 8 TDAs $(\frac{1}{2} \times 2 \times (2 \times 2 \times 2) \times 1)$

$$\begin{aligned} 4\langle \pi^{0}(\boldsymbol{p}_{\pi}) | \, \epsilon^{ijk} u^{i}_{\alpha}(\boldsymbol{z}_{1}\boldsymbol{n}) u^{j}_{\beta}(\boldsymbol{z}_{2}\boldsymbol{n}) d^{k}_{\gamma}(\boldsymbol{z}_{3}\boldsymbol{n}) \, | \boldsymbol{p}(\boldsymbol{p}_{1},\boldsymbol{s}) \rangle &= \frac{if_{N}}{f_{\pi}} \times \\ & \left[V_{1}^{\pi^{0}}(\boldsymbol{x}_{i},\boldsymbol{\xi},\Delta^{2}) (\boldsymbol{p} \, C)_{\alpha\beta}(N^{+})_{\gamma} + V_{2}^{\pi^{0}}(\boldsymbol{x}_{i},\boldsymbol{\xi},\Delta^{2}) (\boldsymbol{p} \, C)_{\alpha\beta}(\boldsymbol{\Delta}_{T} N^{+})_{\gamma} \right. \\ & \left. + A_{1}^{\pi^{0}}(\boldsymbol{x}_{i},\boldsymbol{\xi},\Delta^{2}) (\boldsymbol{p} \, \gamma^{5} C)_{\alpha\beta}(\gamma^{5} N^{+})_{\gamma} + A_{2}^{\pi^{0}}(\boldsymbol{x}_{i},\boldsymbol{\xi},\Delta^{2}) (\boldsymbol{p} \, \gamma^{5} C)_{\alpha\beta}(\gamma^{5} \boldsymbol{\Delta}_{T} N^{+})_{\gamma} \right. \\ & \left. + T_{1}^{\pi^{0}}(\boldsymbol{x}_{i},\boldsymbol{\xi},\Delta^{2}) (\sigma_{p\mu}C)_{\alpha\beta}(\gamma^{\mu} N^{+})_{\gamma} + T_{2}^{\pi^{0}}(\boldsymbol{x}_{i},\boldsymbol{\xi},\Delta^{2}) (\sigma_{p\Delta_{T}}C)_{\alpha\beta}(N^{+})_{\gamma} \right. \\ & \left. + T_{3}^{\pi^{0}}(\boldsymbol{x}_{i},\boldsymbol{\xi},\Delta^{2}) (\sigma_{p\mu}C)_{\alpha\beta}(\sigma^{\mu\Delta_{T}} N^{+})_{\gamma} + T_{4}^{\pi^{0}}(\boldsymbol{x}_{i},\boldsymbol{\xi},\Delta^{2}) (\sigma_{p\Delta_{T}}C)_{\alpha\beta}(\boldsymbol{\Delta}_{T} N^{+})_{\gamma} \right] \end{aligned}$$

B. Pasquini et al.

20 / 20

J.P. Lansberg (CPHT – Ecole Polytechnique)

Backward Hard Exclusive Processes

January 27, 2010