DARK MATTER CANDIDATE FROM LORENTZ INVARIANCE IN 6 DIMENSIONS

J.LLODRA-PEREZ IPN LYON RENCONTRE DE PHYSIQUE DES PARTICULES 2010

G.CACCIAPAGLIA, A.DEANDREA & J.L.P, ARXIV: 0907.4993

OUTLINE

Is it possible to obtain an extra dimensional model with a "natural" dark matter candidate?

- 6D Universal Extra Dimension on a real projective plane.
- Dark matter "constraints" for the extra dimensional radii
- Preliminary results and discussions for phenomenology at LHC

Extra dimension: S₁

Extra dimension: S₁

No Chiral
Fermions
S

Extra dimension: S_1/Z_2

Localized interactions on fixed points Extra symmetry to identify them

ORBIFOLD WITHOUT FIXED POINTS: 6D MODEL

- In 6D, 17 possible ways to orbifold the extra R^2
- Only 3 without fixed points

No Chiral Fermions
Service S

• Definition: R^2/pgg where $pgg = \{r,g | r^2 = (g^2r)^2 = 1\}$

$$r : \begin{cases} x_5 \sim -x_5 \\ x_6 \sim -x_6 \end{cases}, \\ g : \begin{cases} x_5 \sim x_5 + \pi R_5 \\ x_6 \sim -x_6 + \pi R_6 \end{cases} . \\ & & & & & \\ & & & & \\ g : \begin{cases} x_5 \sim x_5 + \pi R_5 \\ x_6 \sim -x_6 + \pi R_6 \end{cases}, \\ gr : \begin{cases} x_5 \sim -x_5 + \pi R_5 \\ x_6 \sim -x_5 + \pi R_6 \end{cases}, \\ gr : & & \\ x_6 \sim x_6 + \pi R_6 \end{cases}. \end{cases}$$

g' =

UNBROKEN KK-PARITY: "NATURAL" DM CANDIDATE

- In the bulk, two discrete parities.
- No fixed point but conical singularities (0, п) ~ (п, 0) & (п, п) ~ (0, 0) ----> Localized interactions
- But here one discrete parity remains • unbroken even by localized terms

 $P_{KK} : \begin{cases} x_5 \sim x_5 + \pi R_5 \\ x_6 \sim x_6 + \pi R_6 \end{cases}$

-----> Relic of 6D Lorentz invariance

Phase for generic KK modes with • momenta (k,l) \longrightarrow (-1)^{k+1}

GAUGE BOSON IN THIS FRAMEWORK

$$S_{\text{gauge}} = \int_{0}^{2\pi} dx_{5} dx_{6} \left\{ -\frac{1}{4} F_{\alpha\beta} F^{\alpha\beta} - \frac{1}{2\xi} \left(\partial_{\mu} A^{\mu} - \xi (\underbrace{\partial_{5} A_{5} + \partial_{6} A_{6}}_{= 0}) \right)^{2} \right\}$$
$$= 0 \text{ if } \xi \to \infty$$
$$\left\{ \begin{array}{c} A_{5} = \sum \phi_{5}(x_{5}, x_{6}) A_{(k,l)} \\ A_{6} = \sum \phi_{6}(x_{5}, x_{6}) A_{(k,l)} \end{array} \text{ with } \partial_{5} \phi_{5} + \partial_{6} \phi_{6} = 0 \end{array} \right.$$

- Eq. of motion: $(p^2 + \partial_5^2 + \partial_6^2)\phi_{5/6} = 0$ and $m_{KK} = \sqrt{\frac{k^2}{R_5^2} + \frac{l^2}{R_6^2}}$
- After we impose parity under **r** and **g**: (p_r,p_g)

Levels (k, l)	PKK	$A_{\mu}^{(+,+)}$	A ₅ (-,+)	A ₆ (-,-)
(0, 0)	+	$\frac{1}{2\pi}$		
(0, 21)	+	$\frac{1}{\sqrt{2}\pi}\cos 2lx_6$		
(0, 21-1)	-		$\frac{1}{\sqrt{2}\pi}\sin{(2l-1)x_6}$	
(2k, 0)	+	$\frac{1}{\sqrt{2\pi}}\cos 2kx_5$		
(2k-1, 0)	-			$\frac{1}{\sqrt{2}\pi}\sin{(2k-1)x_5}$
(k, 1) _{k+l even}	+	$\frac{1}{\pi}\cos kx_5\cos lx_6$	$\frac{l}{\pi\sqrt{k^2+l^2}}\sin kx_5\cos lx_6$	$\frac{-k}{\pi\sqrt{k^2+l^2}}\cos kx_5\sin lx_6$
(k, 1) _{k+l odd}	-	$\frac{1}{\pi}\sin kx_5\sin lx_6$	$\frac{l}{\pi\sqrt{k^2+l^2}}\cos kx_5\sin lx_6$	$\frac{-k}{\pi\sqrt{k^2+l^2}}\sin kx_5\cos lx_6$

TREE LEVEL SPECTRUM STANDARD MODEL

Levels	Mass	Р _{КК} =(-1) ^{k+l}	Gauge Vectors (A ^μ , Z ^μ , W ^μ , G ^μ)	Gauge Scalars (A ⁵ , A ⁶ ,)	Fermions	Higgs
(0,0)	0	+	YES	NO	YES (Chiral)	YES
(1,0) &(0,1)	1/R	_	NO	YES	YES (Dirac)	NO
(1,1)	√2/R	+	YES	YES	YES (Dirac) x 2	YES
(2,0) &(0,2)	2/R	+	YES	NO	YES (Dirac)	YES
(2,1) &(1,2)	√5/R	_	YES	YES	YES (Dirac) x 2	YES

Choice of degenerate case: R₅=R₆=R

TREE LEVEL SPECTRUM: LLP LEVEL

Levels	Mass	$P_{KK} = (-1)^{k+1}$	Gauge Vectors (A ^μ , Z ^μ , W ^μ , G ^μ)	Gauge Scalars (A ⁵ , A ⁶ ,)	Fermions	Higgs
(0,0)	0	+	YES	NO	YES (Chiral)	YES
(1,0) &(0,1)	1/R	_	NO	YES	YES (Dirac)	NO
(1,1)	√2/R	+	YES	YES	YES (Dirac) x 2	YES
(2,0) &(0,2)	2/R	+	YES	NO	YES (Dirac)	YES
(2,1) &(1,2)	√5/R	_	YES	YES	YES (Dirac) x 2	YES

Choice of degenerate case: R₅=R₆=R

SPLITTING : RADIATIVE ÅND HIGGS CORRECTIONS

- Calculation for LLP level
- 6D loop calculations: Mixed propagator method

$$\delta m_B^2 = \frac{{g'}^2}{64\pi^4 R^2} \left[-79T_6 + 14\zeta(3) + \pi^2 n^2 L + B_1 - 4B_2 \right] ,$$

$$\delta m_W^2 = \frac{g^2}{64\pi^4 R^2} \left[-39T_6 + 70\zeta(3) + 17\pi^2 n^2 L + 7B_1 - 32B_2 - 2B_3 \right] ,$$

$$\delta m_G^2 = \frac{g_s^2}{64\pi^4 R^2} \left[-36T_6 + 84\zeta(3) + 24\pi^2 n^2 L + 9B_1 - 42B_2 - 3B_3 \right] .$$

• EWSB: Higgs VEV

$$\begin{pmatrix} W_n^3 & B_n \end{pmatrix} \cdot \begin{pmatrix} \delta m_W^2 + m_W^2 & -\tan\theta_W m_W^2 \\ -\tan\theta_W m_W^2 & \delta m_B^2 + \tan^2\theta_W m_W^2 \end{pmatrix} \cdot \begin{pmatrix} W_n^3 \\ B_n \end{pmatrix} + \frac{1}{2} \left(\frac{W_n^3}{B_n} \right) + \frac{1}{2} \left(\frac{$$

DARK MATTER CANDIDATE: HEAVY SCALAR PHOTON

FIRST CALCULATION OF RELIC DENSITY

- Included effects:
 - Large co-annihilation (small splitting)
- First approximation:
 - EWSB neglected
 - No resonant annihilation via Higgs or (0,2)-(2,0) tiers
 - Localized kinetic terms neglected

Model soon implemented in FeynRules & in relic abundance codes

RELIC DENSITY AND RADII FIRST ESTIMATION

RELIC DENSITY AND RADII FIRST ESTIMATION

200 GEV<1/R<300 GEV

RELIC DENSITY AND RADII FIRST ESTIMATION

300 GEV<1/R<400 GEV

PHENOMENOLOGY @ LHC : DECAYS OF LIGHTEST TIER

- Production cross sections of the lightest tier for
 1/R ~ 300÷400 GeV: 10 fb < σ_{prod} < 1 pb (preliminary work of B.Kubik)
- Small splitting

 Difficult detection of the lightest tier

-					$A^{(1,0)}$
		$m_X - m_{LLP}$ in GeV	decay mode	final state + MET	Missing E
	$t^{(1,0)}$	70	$bW^{(1,0)}$	bjj bl u	$W^{(1,0)}$ 1(0,0)
	$G^{(1,0)} \ q^{(1,0)}$	40-70 20-40	$qq^{(1,0)} \\ qA^{(1,0)}$	$jj \\ i$	soft charged
£	$W^{(1,0)}$	20	$l u^{(1,0)}, u l^{(1,0)}$	$l\nu$	V ^(0,0) lepton
	$Z^{(1,0)}$	20	$ll^{(1,0)}$	ll	Missing F
	$l^{(1,0)}$	< 5	$lA^{(1,0)}$	l	TVIISSIIIE L _T
	$A^{(1,0)}$	0	-		
_					

A (1 0)

PHENOMENOLOGY @ LHC : DECAYS OF HEAVIER TIERS

Tiers (1,1) @ √2/R & Tiers (2,0)-(0,2) @ 2/R
 via localized via loops (& kinetic terms)
 Mainly resonant decays into SM particles & no Missing E_T

PHENOMENOLOGY @ LHC : DECAYS OF HEAVIER TIERS

Tiers (1,1) @ √2/R & Tiers (2,0)-(0,2) @ 2/R
 via localized via loops (& kinetic terms)
 Mainly resonant decays into SM particles & no Missing E_T

PHENOMENOLOGY @ LHC : DECAYS OF HEAVIER TIERS

- Tiers (1,1) @ √2/R & Tiers (2,0)-(0,2) @ 2/R via localized kinetic terms
 Mainly resonant decays into SM particles & no Missing E_T
- Tiers (2,1) @ √5/R via loops (& kinetic terms)
 - Can decay into SM
 particles & Missing E_T
 Rare but clear signature

CONCLUSION

- ✓ KK-Parity is build-in in this 6D space:
 - from topology and Lorentz invariance
 - without imposing new extra-parity
- ✓ Good predictability : not so many localized interactions
- ✓ Low mass range for KK-states (Preliminary study)
- ✓ Possible extensions: Gauge-Higgs Unification, warped space,...
- EWPT have to be checked
- Relic density including EWSB effects, resonant effects,... (In collaboration with A. Arbey)
- Implementation in FeynRules for using generator of events
 LHC predictions (Started in Calchep by Bogna Kubik)

CONCLUSION

- ✓ KK-Parity is build-in in this 6D space:
 - from topology and Lorentz invariance
 - without imposing new extra-parity
- ✓ Good predictability: not so many localized interactions
- ✓ Low mass range for KK-states (Preliminary study)
- ✓ **Possible extensions:** Gauge-Higgs Unification, warped space,...
- EWPT have to be checked
- Relic density including EWSB effects, resonant effects,... (In collaboration with A. Arbey)
- Implementation in FeynRules for using generator of events
 LHC predictions (Started in Calchep by Bogna Kubik)

CONCLUSION

- ✓ KK-Parity is build-in in this 6D space:
 - from topology and Lorentz invariance
 - without imposing new extra-parity
- ✓ Good predictability : not so many localized interactions
- ✓ Low mass range for KK-states (Preliminary study)
- ✓ Possible extensions: Gauge-Higgs Unification, warped space,...
- EWPT have to be checked
- * Relic density including EWSB effects, resonant effects,... (In collaboration with A. Arbey)
- Implementation in FeynRules for using generator of events
 LHC predictions (Started in Calchep by Bogna Kubik)

THE END

5D LIMIT OF THIS MODEL $R_6 \rightarrow 0$

Levels	Mass	$P_{KK} = (-1)^{k+1}$	Gauge Vectors (A ^μ , Z ^μ , W ^μ , G ^μ)	Gauge Scalars (A ⁵ , A ⁶ ,)	Fermions	Higgs
(0,0)	0	+	YES	NO	YES (Chiral)	YES
(1,0) & (1,0)	1/R	-	NO	YES	YES (Dirac)	NO
(1,1)	√2/R	+	YES	YES	YES (Dirac) x 2	YES
(2,0) & (2,0)	2/R	+	YES	NO	YES (Dirac)	YES
(2,1) &(1,2)	15/R	-	YES	YES	YES (Dirac) x 2	YES

5D LIMIT OF THIS MODEL $R_6 \rightarrow 0$

Levels	Mass	Р _{КК} =(-1) ^{k+l}	Gauge Vectors (A ^μ , Z ^μ , W ^μ , G ^μ)	Gauge Scalars (A ⁵ , A ⁶ ,)	Fermions	Higgs
(0,0)	0	+	YES	NO	YES (Chiral)	YES
(1,0)	1/R	-	NO	YES (Only A ⁶ , Z ⁶ ,)	YES (Dirac)	NO
(2,0)	2/R	+	YES	NO	YES (Dirac)	YES

Not a usual 5D UED Model limit

 \rightarrow

Topological Consequences

• Definition: R^2/pgg where $pgg = \{r,g | r^2 = (g^2r)^2 = 1\}$

$$r : \begin{cases} x_5 \sim -x_5 \\ x_6 \sim -x_6 \end{cases}, \\ g : \begin{cases} x_5 \sim x_5 + \pi R_5 \\ x_6 \sim -x_6 + \pi R_6 \end{cases}.$$

$$t_5 = g^2 : \begin{cases} x_5 \sim x_5 + 2\pi R_5 \\ x_6 \sim x_6 \end{cases},$$

$$t_6 = (rg)^2 : \begin{cases} x_5 \sim x_5 \\ x_6 \sim -x_6 + 2\pi R_6 \end{cases},$$

• Definition: R^2/pgg where $pgg = \{r,g | r^2 = (g^2r)^2 = 1\}$

$$r : \begin{cases} x_5 \sim -x_5 \\ x_6 \sim -x_6 \end{cases}, \\ g : \begin{cases} x_5 \sim x_5 + \pi R_5 \\ x_6 \sim -x_6 + \pi R_6 \end{cases}, \\ g : \begin{cases} x_5 \sim x_5 + \pi R_5 \\ x_6 \sim -x_6 + \pi R_6 \end{cases}, \\ = gr : \begin{cases} x_5 \sim -x_5 + \pi R_5 \\ x_6 \sim -x_5 + \pi R_6 \end{cases}, \end{cases}$$

g'

• Definition: R^2/pgg where $pgg = \{r,g | r^2 = (g^2r)^2 = 1\}$

$$r : \begin{cases} x_5 \sim -x_5 \\ x_6 \sim -x_6 \end{cases}, \\ g : \begin{cases} x_5 \sim x_5 + \pi R_5 \\ x_6 \sim -x_6 + \pi R_6 \end{cases}, \\ g : \begin{cases} x_5 \sim x_5 + \pi R_5 \\ x_6 \sim -x_6 + \pi R_6 \end{cases}, \\ = gr : \begin{cases} x_5 \sim -x_5 + \pi R_5 \\ x_6 \sim -x_5 + \pi R_6 \end{cases}, \end{cases}$$

g'

ONE 6D-LOOP CORRECTIONS : MIXTE PROPAGATOR

• 6D mixed propagator on a torus $G_S^{6D}(k, \vec{y} - \vec{y'}) = \sum_{l=-\infty}^{\infty} G_S^{5D}(\chi_l, x_5 - x'_5) f_l^*(x_6) f_l(x'_6)$

$$f_l(x_6) = \frac{1}{\sqrt{2\pi}} e^{ix_6 l} \quad \text{and} \quad G_S^{5D}(\chi_m, y - y') = \frac{i\cos\chi_m(\pi - |y - y'|)}{2\chi_m \,\sin\chi_m \pi} \quad \text{where} \quad \chi_m = \sqrt{k^2 - m^2}$$

• Propagator in the orbifold

$$\begin{aligned} G_{S}^{orb}(p,\overrightarrow{y},\overrightarrow{y}') &= \frac{1}{4} \int_{-1}^{0} \left[G_{S}^{6D}(p,\overrightarrow{y}-\overrightarrow{y}'+\overrightarrow{\Omega}) + p_{g} G_{S}^{6D}(p,\overrightarrow{y}-g(\overrightarrow{y}')+\overrightarrow{\Omega}) + p_{r} G_{S}^{6D}(p,\overrightarrow{y}-r(\overrightarrow{y}')+\overrightarrow{\Omega}) + p_{r} g_{g} G_{S}^{6D}(p,\overrightarrow{y}-r\ast g(\overrightarrow{y}')+\overrightarrow{\Omega}) \right] \end{aligned}$$

Scalar Tadpole

 $\Pi^{66} = \Pi_T + p_g \ \Pi_G + p_r \ \Pi_R + p_g p_r \ \Pi_{G'}$

SPLITTINGS: ONE 6D-LOOP AND EWSB CORRECTIONS

e

b

f

g

 A_6

d

$$T_{6} = \frac{1}{\pi} \sum_{(k, l) \neq (0, 0)} \frac{1}{(k^{2} + l^{2})^{2}} \sim 1.$$
$$L = \log\left(\frac{\Lambda^{2} + n^{2}}{n^{2}}\right)$$

δm^2 gauge scalars		$ imes p_g$	$ imes p_g p_r$	$ imes p_r$
а	$5T_6$	$5 \cdot 7\zeta(3)$	$3 \cdot (7\zeta(3) + B_1(n))$	$3n^2\pi^2L$
Ь	0	0	$-12B_{2}(n)$	0
с	$-T_{6}$	$-3 \cdot 7\zeta(3)$	$-(7\zeta(3) + B_3(n))$	$5n^2\pi^2L$
d	0	0	$-2B_{2}(n)$	0
е	$-8T_{6}$	0	0	0
f	T_6	$7\zeta(3)$	$(7\zeta(3) + B_1(n))$	$n^2\pi^2L$
g	0	0	$-4B_{2}(n)$	0

FERMIONS IN THIS FRAMEWORK

$$S_{\pm} = \int dx_5 \int dx_6 \frac{i}{2} \Big\{ \bar{\Psi}_{\pm} \Gamma^{\alpha} \partial_{\alpha} \Psi_{\pm} - (\partial_{\alpha} \bar{\Psi}_{\pm}) \Gamma^{\alpha} \Psi_{\pm} \Big\} = \\ = \int dx_5 \int dx_6 \Big\{ i \bar{\psi}_{L\pm} \gamma^{\mu} \partial_{\mu} \psi_{L\pm} + i \bar{\psi}_{R\pm} \gamma^{\mu} \partial_{\mu} \psi_{R\pm} + \\ + \frac{1}{2} \Big[\bar{\psi}_{L\pm} \gamma_5 (\partial_5 \mp i \partial_6) \psi_{R\pm} + \bar{\psi}_{R\pm} \gamma_5 (\partial_5 \pm i \partial_6) \psi_{L\pm} + h.c. \Big] \Big\}$$

For a left-handed fermion, case (\pm) , the KK modes are given by:

while for both $k,l\neq 0,$ there are 2 degenerate solutions for each level which can be parameterized as

$$\Psi^{(+\pm)} = \begin{pmatrix} (a\cos kx_5 \cos lx_6 + b\sin kx_5 \sin lx_6) f_l \\ \pm (-1)^{k+l} (c\sin kx_5 \cos lx_6 - d\cos kx_5 \sin lx_6) \bar{f}_r \\ \pm (-1)^{k+l} (a\cos kx_5 \cos lx_6 - b\sin kx_5 \sin lx_6) f_l \\ (c\sin kx_5 \cos lx_6 + d\cos kx_5 \sin lx_6) \bar{f}_r \end{pmatrix},$$
(3.16)

where we can use the EOMs and normalization condition to fix the coefficients

$$a = \frac{\cos \alpha}{\sqrt{2\pi}} \qquad c = -\frac{k \cos \alpha - i l \sin \alpha}{\sqrt{2\pi}\sqrt{k^2 + l^2}} \\ b = \frac{\sin \alpha}{\sqrt{2\pi}} \qquad d = \frac{k \sin \alpha - i l \cos \alpha}{\sqrt{2\pi}\sqrt{k^2 + l^2}}$$
(3.17)

 $\frac{1}{2}$

SPLITTINGS : ONE 6D-LOOP AND EWSB CORRECTIONS

- Calculation for LLP level
- 6D loop calculations: Mixed propagator method $\delta m_B^2 = \frac{{g'}^2}{64\pi^4 R^2} \left[-79T_6 + 14\zeta(3) + \pi^2 n^2 L + B_1 - 4B_2\right],$ $\delta m_W^2 = \frac{g^2}{64\pi^4 R^2} \left[-39T_6 + 70\zeta(3) + 17\pi^2 n^2 L + 7B_1 - 32B_2 - 2B_3\right],$ $\delta m_G^2 = \frac{g_s^2}{64\pi^4 R^2} \left[-36T_6 + 84\zeta(3) + 24\pi^2 n^2 L + 9B_1 - 42B_2 - 3B_3\right].$
- EWSB: Higgs VEV $\begin{pmatrix} W_n^3 & B_n \end{pmatrix} \cdot \begin{pmatrix} \delta m_W^2 + m_W^2 & -\tan \theta_W m_W^2 \\ -\tan \theta_W m_W^2 & \delta m_B^2 + \tan^2 \theta_W m_W^2 \end{pmatrix} \cdot \begin{pmatrix} W_n^3 \\ B_n \end{pmatrix} \cdot$

$$\begin{array}{lll} m_{A_n,Z_n}^2 &=& \displaystyle \frac{n^2}{R^2} + \frac{1}{2} \Big(m_Z^2 + \delta m_B^2 + \delta m_W^2 \\ & \mp & \sqrt{(m_Z^2 + \delta m_B^2 - \delta m_W^2)^2 - 4m_W^2 (\delta m_B^2 - \delta m_W^2)} \Big) \\ & m_{W^+}^2 &=& \displaystyle \frac{n^2}{R^2} + \delta m_W^2 + m_W^2 ; \end{array}$$

SPLITTINGS : HEAVY TOP MASS CORRECTIONS

• 6D loop calculations: Mixed propagator method $S_{\text{Yukawa}} = -\int dx_5 dx_6 Y_6 \bar{\Psi}_Q H \Psi_U + h.c. =$ $= -\int dx_5 dx_6 Y_6 [\eta_{Q+} H \chi_{U-} + \eta_{Q-} H \chi_{U+} + \bar{\chi}_{Q+} H \bar{\eta}_{U-} + \bar{\chi}_{Q-} H \bar{\eta}_{U+}] + h.c.$

$$\mathcal{L}_{\text{Yukawa}(\mathbf{k},\mathbf{l})} = -(-1)^{k+l} m_{\text{top}} \left(\bar{q}_l^{(k,l)} u_r^{(k,l)} - \bar{q}_r^{(k,l)} u_l^{(k,l)} \right) + h.c. \,.$$

• EWSB: Higgs VEV

$$\mathcal{L}_{\text{mass}} = -\left(\begin{array}{cc} \bar{q}_l & \bar{u}_l \end{array}\right) \cdot \left(\begin{array}{cc} \frac{1}{R} + \delta m_Q & -m_{\text{top}} \\ m_{\text{top}} & \frac{1}{R} + \delta m_U \end{array}\right) \cdot \left(\begin{array}{c} q_r \\ u_r \end{array}\right) + h.c. \,.$$

$$m_{t1/2}^2 = \frac{1}{R^2} + m_{top}^2 + \delta m_Q \left(\frac{1}{R} + \frac{1}{2}\delta m_Q \pm B\right) + \delta m_U \left(\frac{1}{R} + \frac{1}{2}\delta m_U \mp B\right) \,,$$

with

$$B = \sqrt{\left(\frac{1}{R} + \frac{\delta m_Q + \delta m_U}{2}\right)^2 + m_{\rm top}^2}.$$

PHENOMENOLOGY @ LHC : PRODUCTION

Preliminary thanks to Bogna Kubik

PHENOMENOLOGY @ LHC : PRODUCTION

• Production cross sections of the lightest tier for $1/R \sim 300 \div 400$ GeV: 10 fb < $\sigma_{prod} < 1$ pb

Preliminary plots

Thanks to Bogna Kubik

PHENOMENOLOGY @ LHC : DECAYS OF LIGHTEST TIER

 Small splittings ->>> Detection of the lightest tier will not be easy

(1 0)

	$\begin{array}{c} m_X - m_{LLP} \\ \text{in GeV} \end{array}$	decay mode	$\begin{array}{c} \text{final state} \\ + \text{MET} \end{array}$	Missing H
$t^{(1,0)}$	70	$bW^{(1,0)}$	$bjj \\ bl u$	$G^{(1,0)}$ $q^{(-,-)}$ $\sigma^{(0,0)}$
$G^{(1,0)}$	40-70	$qq^{(1,0)}$	jj	
$q^{(1,0)}$	20-40	$qA^{(1,0)}$	j	soft je
$W^{(1,0)}$	20	$l\nu^{(1,0)}, \nu l^{(1,0)}$	l u	$\mathbf{Q}^{(0,0)}$
$Z^{(1,0)}$	20	$ll^{(1,0)}$	11	1
$l^{(1,0)}$	< 5	$lA^{(1,0)}$	l	soft jet
$A^{(1,0)}$	0	-		