

The AdS/CFT duality and the scalar sector of QCD

Frédéric Jugeau

Institute of High Energy Physics (IHEP) Chinese Academy of Sciences (CAS)

institute of High Energy Physics, Chinese Academy of Sciences

Rencontre de Physique des Particules RPP 2010 - IPNL - 27/01/2010

AdS/CFT correspondence provides a new way to address Physics at strong coupling

• AdS/CFT correspondence (Maldacena, Witten, Gubser, Klebanov, & Polyakov 1998)

weakly coupled Anti de Sitter Supergravity / strongly coupled (super)Conformal Field Theory

• Holographic Models of QCD or AdS/QCD correspondence

```
(Witten 1998, Polchinski & Strassler 2002, Brodsky et al., Pomarol et al., Erlich et al. 2005)
```


PLB: hep-ph/0703316, PRD: hep-ph/0807.1054, hep-ph/0902.3864, hep-ph/0907.5048, CPC: hep-ph/0912.2659

Maldacena's conjecture (1998) or AdS/CFT correspondence

Operator/field correspondence (Witten, Gubser, Klebanov, Polyakov 1998)

4d boundary operator $\mathcal{O}(x^{\mu})$ \longleftrightarrow 5d bulk field $\phi(x^{\mu}, z)$ massive, *p*-form local, gauge invariant, scaling dim. Δ $\phi(x, z) \xrightarrow[z \to 0]{} z^{4-\Delta}\phi_0(x) + z^{\Delta}\langle \mathcal{O}(x) \rangle$ (if p=0)

$$\langle e^{i\int_{\partial AdS_5} d^4x\phi_0(x)\mathcal{O}(x)}\rangle_{CFT} = e^{iS_{5d}[\phi(x,z)]}\Big|_{\phi(x,z) \xrightarrow[z \to 0]{} \phi_0(x)}$$

AdS/CFT provides 2 languages for deriving correlation functions (2-,3-,4-points)

Scale invariance breaking and AdS/QCD

dilatation invariance $ds_{AdS_5}^2 = \frac{R^2}{z^2} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^2 \right) \begin{bmatrix} x^{\mu} \to e^{-t} x^{\mu} \\ z \to e^{-t} z \end{bmatrix} \text{ (as a spacetime coordinate)}$ canonical dim.dilatation charge : $[D, \mathcal{O}(x)] = -i \left(\Delta + x^{\mu} \partial_{\mu} \right) \mathcal{O}(x) \qquad \text{scaling dim. : } \Delta(g) = \Delta_0 + \gamma(g)$ anomalous dim. (AdS/QCD : $\gamma = 0$)

→ different values of z : different scales at which the hadrons are observed

- UV regime : **boundary** space ∂AdS_5 ($z \sim Energy^{-1} \rightarrow 0$)
- IR regime : max. separation of quarks inside hadrons \rightarrow max. value of z
- Hard wall approx. (Polchinski & Strassler 2002) : $0 < z \leq z_m \sim 1/\Lambda_{QCD}$

 $\Rightarrow~$ Kaluza-Klein <code>mass</code> spectrum (~ QM well potential) : $m_n^2 \propto n^2$

• Soft wall approx. (Karch et al. 2006) : background dilaton field $\Phi(z) = c^2 z^2$

(Gherghetta et al. 2008 : dynamical justification)

Linear Regge trajectories : $m_n^2 \propto n$

 (c, z_m) break conformal inv. of CFT : introduction of QCD scale Λ_{QCD}

Caveat : strong $\lambda >> 1$ at any length scales (no asymptotic freedom of QCD ?)

- Holographic models of the scalar sector of QCD chiral dynamics of QCD (a few operators) • Scalar mesons: a_n(980, 1450), f_n(980, 1370, 1505)... Scalar (& vector) glueballs : bound-states of gluons (well defined in the large N limit) M^4 QCD operators Gravity dual theory in the 5d bulk $\begin{bmatrix} A_{L\mu}^{a}(x,z) & \& & A_{R\mu}^{a}(x,z) \\ R^{2}m_{AdS}^{2} = 0 \end{bmatrix} \xrightarrow{V_{\mu}^{a}(x,z)} & \& & A_{\mu}^{a}(x,z) \\ & \downarrow & \downarrow & \downarrow \\ \text{vector } \rho, \text{ axial a1,} \\ \text{pseudoscalar modes} \\ \begin{bmatrix} X(x,z) = v(z)/2 e^{2i\pi(x,z)} \\ R^{2}m_{AdS}^{2} = -3 \end{bmatrix} \xrightarrow{\text{chiral symmetry breaking function } v(z), \\ \text{chiral pion } \pi \end{bmatrix}$ • left- and right-handed currents : $j_{L\,\mu}^{a}$ & $j_{R\,\mu}^{a}$ (Δ =3,p=1) • chiral order parameter : $\overline{q}_R q_L$ (Δ =3,p=0) $X(x,z) = (v(z)/2 + S(x,z)) e^{2i\pi(x,z)} \text{ scalar a0}$ $X(x,z) = (v(z)/2 + S(x,z)) e^{2i\pi(x,z)} \text{ scalar a0}$ Soft wall model $R^2 m_{AdS}^2 = 0 \qquad \text{scalar glueball} \qquad \Phi(z) = c^2 z^2$ $A_M(x,z)$ $R^2 m_{AdS}^2 = 24 \qquad \text{vector glueball}$ hard wall model scalar meson operator : $\mathcal{O}_{S}^{A} = \overline{q} T^{A} q$ (Δ =3,p=0) • scalar glueball operator : $\mathcal{O}_S = Tr\left(G^2\right)$ (Δ =4,p=0) vector glueball operator : hard wall model z $\mathcal{O}_V = Tr(G(DG)G) (\Delta=7,p=1)$ Ζ
- AdS/CFT : String-like theories \rightarrow QCD-like gauge theories (top-down approach)
- AdS/QCD : QCD properties \rightarrow 5d <u>weakly-coupled</u> dual theory (**bottom-up** approach)

Soft Wall Model of QCD

$$S_{5d} = -\frac{1}{k} \int d^5x \sqrt{-g} e^{-\Phi(z)} Tr\left\{ |DX|^2 + m_{AdS}^2 |X|^2 + \frac{1}{2g_5^2} \left(G_V^2 + G_A^2\right) \right\}$$

linear eqs. of motion :

• axial-vector :
$$\tilde{A}^{a}_{\mu}(q,z) = \tilde{A}^{a}_{\mu\perp}(q,z) + iq_{\mu}\tilde{\phi}^{a}(q,z)$$
 [longitudinal $\tilde{\phi}$: pseudoscalar modes
transverse A_{\perp} : al mesons

$$\begin{bmatrix} \partial_{z} \left(\frac{e^{-\Phi(z)}}{z} \partial_{z} \tilde{A}^{a}_{\mu} \right) - q^{2} \frac{e^{-\Phi(z)}}{z} \tilde{A}^{a}_{\mu} - g_{5}^{2} R^{2} v(z)^{2} \frac{e^{-\Phi(z)}}{z^{3}} \tilde{A}^{a}_{\mu} \end{bmatrix}_{\perp} = 0$$
• vector : $\partial_{z} \left(\frac{e^{-\Phi(z)}}{z} \partial_{z} \tilde{V}^{a}_{\mu}(q,z) \right) - q^{2} \frac{e^{-\Phi(z)}}{z} \tilde{V}^{a}_{\mu}(q,z) = 0$
[$\begin{bmatrix} q^{2} = -m_{\rho_{n}}^{2} = -4c^{2}(n+1) \\ \hline & c = \frac{m_{\rho}}{2} \simeq 385 \text{ MeV} \end{bmatrix}$
• chiral symmetry breaking function : $\partial_{z} \left(\frac{e^{-\Phi(z)}}{z^{3}} \partial_{z} v(z) \right) + 3 \frac{e^{-\Phi(z)}}{z^{5}} v(z) = 0$
• pseudoscalar : $\int \partial_{z} \left(\frac{e^{-\Phi(z)}}{z} \partial_{z} \tilde{\phi}^{a} \right) + g_{5}^{2} R^{2} v(z)^{2} \frac{e^{-\Phi(z)}}{z^{3}} \left(\tilde{\pi}^{a} - \tilde{\phi}^{a} \right) = 0$
• scalar : $\partial_{z} \left(\frac{e^{-\Phi(z)}}{z^{3}} \partial_{z} \tilde{S}^{A} \right) + 3 \frac{e^{-\Phi(z)}}{z^{5}} \tilde{S}^{A} - q^{2} \frac{e^{-\Phi(z)}}{z^{3}} \tilde{S}^{A} = 0$

Soft Wall Model for scalar mesons

n-point correlation functions in terms of bulk-to-boundary propagators

• <u>2-point correlation function</u> :

- QCD:
$$\Pi_S^{(QCD)AB}(q^2) = i \int d^4x e^{iq \cdot x} \langle 0|T[\mathcal{O}_S^A(x)\mathcal{O}_S^B(0)]|0\rangle$$

- AdS:
$$\Pi_S^{(AdS) AB}(q^2) = \delta^{AB} \frac{R^3}{k} K\left(\frac{q^2}{c^2}, c^2 z^2\right) \frac{e^{-\Phi(z)}}{z^3} \partial_z K\left(\frac{q^2}{c^2}, c^2 z^2\right) \Big|_{z=\epsilon}$$

$$\Pi_{S}^{(AdS)AB}(q^{2}) = \delta^{AB} \frac{4c^{2}R}{k} \Big[\frac{1}{4c^{2}z^{2}} + \Big(\frac{q^{2}}{4c^{2}} + \frac{1}{2} \Big) \ln(c^{2}z^{2}) + \gamma_{E} - \frac{1}{2} + \frac{q^{2}}{4c^{2}} \Big(2\gamma_{E} - \frac{1}{2} \Big) \\ + \Big(\frac{q^{2}}{4c^{2}} + \frac{1}{2} \Big) \psi(\frac{q^{2}}{4c^{2}} + \frac{3}{2}) \Big] \Big|_{z=\epsilon} .$$

Masses (simple poles of the ψ digamma function) :

$$-q^2 = m_{S_n}^2 = c^2(4n+6)$$

Ratio (1.612±0.004):
$$R_{a_0} \equiv \frac{m_{a_0}^2}{m_{\rho^0}^2} = \frac{3}{2}$$
First radial excitation state (1.01±0.04): $R_{a_0'} = \frac{5}{4}$
Decay constants (residues): $F_n^2 = \frac{N}{\pi^2}c^4(n+1)$

 \succ current-vacuum matrix elt. (0.21±0.05 GeV²) : $F_{a_0}\simeq 0.08~{
m GeV}^2$

0

$$\succ$$
 First radial excitation state : $F_{a_0'}\simeq 0.12~{
m GeV}^2$

$$\succ \quad \frac{F_{S_n}^2}{m_{S_n}^2} \quad \text{becomes constant as } n \text{ increases}$$

- Large q² limit of the 2-point correlation function : pert. contr. + power corrections (condensates)
 - \succ 4-dim. gluon condensate (0,012 GeV⁴):

$$\langle \frac{\alpha_s}{\pi} G^2 \rangle = \frac{2}{\pi^2} c^4 \simeq 0.004 \; \mathrm{GeV^4}$$

> 6-dim. condensates (QCD \propto - <qq>²) : 6-dim. **positive** condensates

• <u>3-point correlation functions :</u>

$$\begin{aligned} & \text{scalar bulk field} \quad \text{chiral bulk field} \\ & \text{b 5d interaction action :} \\ & iS_{5d}^{(S\pi\pi)} = -i\frac{4}{k} \int d^5x \sqrt{-g} e^{-\Phi(z)} g^{MN} v(z) Tr \left\{ \begin{array}{l} S(\partial_M \pi - \partial_M \phi)(\partial_N \pi - \partial_N \phi) \\ S(\partial_M \pi - \partial_M \phi)(\partial_N \pi - \partial_N \phi) \\ & \text{longitudinal component} \\ & \text{of the axial-vector bulk field} \\ & \text{b 3-point correlator} \quad \text{scalar form factor} \quad \text{scalar form factor} \quad \text{spP couplings :} \\ & \Pi_{\alpha\beta}^{(QCD) abc}(p_1, p_2) = -\frac{p_1 \alpha p_2 \beta}{p_1^2 p_2^2} f_{\pi}^2 F_{\pi}^{abc}(q^2) \quad \& \quad F_{\pi}^{abc}(q^2) = -d^{abc} \sum_{n=0}^{\infty} \frac{F_n g_{S_n \pi \pi}}{q^2 + m_{S_n}^2} \\ & g_{S_n \pi \pi} = \frac{1}{k} \frac{2}{f_{\pi}^2} \int_0^{\infty} dz \frac{R^3}{z^3} e^{-\Phi(z)} v(z) \frac{1}{Rc} \sqrt{\frac{8}{N}} \pi S_n(c^2 z^2) \left[\left(\partial_z A(0, c^2 z^2) \right)^2 + \frac{m_{S_n}^2}{2} A(0, c^2 z^2)^2 \right] \\ & \text{massless pion decay constant} \quad \text{scalar holo, wave function} \quad \text{axial-vector b-to-b prop. at q}^2 = 0 \\ & g_{S\pi\pi}^{(0)} = \frac{\sqrt{N_c}}{4\pi} \frac{m_{S_0}^2}{f_{\pi}^2} Rc^2 \int_0^{\infty} dz \, e^{-c^2 z^2} v(z) \\ & \quad \left[\begin{array}{c} f_{\pi}^2 \propto N : g_{S_n \pi \pi}^{(0)} \\ & \sim \text{chiral symmetry breaking function} \\ & v(z) = \frac{m_q}{R} z \Gamma(\frac{3}{2}) U(\frac{1}{2}; 0; c^2 z^2) \xrightarrow{\rightarrow} \frac{m_q}{R} z + \frac{\sigma}{R} z^3 \\ & \text{quark condensate } \sigma \propto m_q \text{ light quark mass} \end{array} \right.$$

Soft Wall Model for the scalar & vector glueballs

$$S_{5d}^{(scalar)} = -\frac{1}{2\kappa_S} \int d^5x \sqrt{-g} e^{-\Phi(z)} g^{MN} \left(\partial_M X\right) \left(\partial_N X\right)$$
$$S_{5d}^{(vector)} = -\frac{1}{2\kappa_V} \int d^5x \sqrt{-g} e^{-\Phi(z)} g^{MN} \left(\frac{1}{2} g^{MN} g^{ST} F_{MS} F_{NT} + m_{AdS}^2 g^{ST} A_S A_T\right)$$

Spectroscopy :
• scalar glueball :
$$m_{G_{0n}}^2 = c^2(4n+8)$$
 $f_{G_{0n}}^2 \equiv |\langle 0|\mathcal{O}_S(0)|G_{0n}\rangle|^2 = \frac{R^3}{\kappa_S}8(n+1)(n+2)c^3$
• vector glueball : $m_{G_{1n}}^2 = c^2(4n+12)$ $\implies m_{G_{1n}}^2 - m_{G_{0n}}^2 = m_{\rho}^2 = 4c^2$

AdS/QCD	QCDSR			Lattice QCD	
	Dominguez, Paver ('86)	Narison (hep-ph/9612457)	Hang, Zhang (hep-ph/9801214)	Morningstar (hep-lat/9901004)	Meyer (hep-lat/0508002)
m_{G_0} 1.089 GeV	< 1	1.5 (0.2)	1.580(150)	1.730(50)(80)	1.475(30)(65)

Morningstar	Meyer
(hep-lat/9901004)	(hep-lat/0508002)
3.850(50)(190)	3.240(330)(150)

 m_{G_1} 1.334 GeV

Modification of the background : (λ : perturbative parameter) $(\lambda : perturbative parameter)$ $dilaton \Phi(z)$ metric function $g_{MN}(z) = e^{2A(z)}\eta_{MN}$

• UV conformal behaviour :
$$ds^2_{bulk} \xrightarrow[z \to 0]{\rightarrow} ds^2_{AdS_l}$$

• IR regime : linear Regge behaviour of the mass spectrum

The large N behaviour of the Hard Wall Model The holographic mechanism of the $S\chi SB$

Large-N behaviour :

•
$$\rho$$
 meson normalizable mod es : $v_n(z) = \sqrt{2} \frac{z}{z_m} \frac{J_1(m_{\rho_n} z)}{J_1(m_{\rho_n} z_m)} \sim O(N^0)$
• ρ meson mass spectrum : $m_{\rho_n} = \frac{\gamma_{0,n}}{z_m} \sim O(N^0) \implies z_m \simeq 1/323 \text{ MeV}^{-1}$
• decay constants : $F_{\rho_n}^2 = \frac{R}{kg_5^2} \left(\frac{1}{z}\partial_z v_n(z)\right)^2 \Big|_{z=\epsilon}$
 $F_{a_n}^2 = \frac{R}{kg_5^2} \left(\frac{1}{z}\partial_z a_n(z)\right)^2 \Big|_{z=\epsilon}$
• b-to-b propagator : - timelike $V(q^2, z) = \sqrt{\frac{kg_5^2}{R}} \sum_{n=1}^{\infty} \frac{F_{\rho_n} v_n(z)}{q^2 - m_{\rho_n} + i\epsilon}$
- spacelike $V(Q, z) = Qz \left(K_1(Qz) + \frac{K_0(Qz_m)}{I_0(Qz_m)}I_1(Qz)\right)^{-1} \sim O(N^0)$
• form factors : $F_{\pi}(Q^2)$, $A_{\pi}(Q^2) \propto \frac{R}{kg_5^2} \frac{1}{f_{\pi}^2} \times O(N^0) \sim O(N^0)$
• VPP coupling constant : $g_{\rho_n\pi\pi} \propto \sqrt{\frac{R}{kg_5^2}} \frac{1}{f_{\pi}^2} \times O(N^0) \sim O\left(\sqrt{1/N}\right) \implies$ vanishes in the large N limit

<u>The holographic mechanism of the S χ SB in the Hard Wall Model :</u>

•
$$\chi$$
SB function : $v(z) = \frac{\overline{m}_q}{R} z + \frac{\overline{\sigma}}{R} z^3 \quad \left\{ \begin{array}{l} \overline{m}_q \propto m_q \sim O(N^0) \\ \overline{\sigma} \propto \sigma \equiv -\langle \overline{q}q \rangle \sim O(N) \end{array} \right.$

pseudoscalar mode eq. of motion :
$$q^2 \partial_z \phi - g_5^2 R^2 v(z)^2 rac{1}{z^2} \partial_z \pi = 0$$

Gell-Mann-Oakes-Renner relation : $m_\pi^2 f_\pi^2 = 2 m_q \sigma$

Soft & Hard Wall models : similar conformal behaviour of the correlation functions UV pert. contribution of scalar correlator in the Soft Wall model : $\frac{R}{k} = \frac{N}{16\pi^2}$

$$\overline{\sigma} = \frac{k}{R} \sigma = \frac{16\pi^2}{N} \sigma \qquad \Longrightarrow \qquad v(z) = \frac{z}{R} \left(m_q + \frac{16\pi^2}{N} \sigma z^2 \right) \sim O(N^0)$$

AdS estimate : $\sigma \simeq (171 \text{ MeV})^3$

Some open issues

- Holographic description of the flavour
- Holographic description of the UV regime of QCD

Wilson loop v.e.v. (Maldacena 1998): $W[C] = Z_{string}[C]$ (F.J. hep-ph/0812.4903)

AdS/CFT: $V_{Q\overline{Q}}^{(R)}(r) \propto -\frac{\sqrt{\lambda}}{r}$ $\left\{\begin{array}{c} \text{coulomb-like conformal behaviour } 1/r \text{ at } \underline{\text{all length scales}}\\ \text{non-perturbative : non-polynomial } \sqrt{\lambda} \end{array}\right.$

AdS/QCD: $- \begin{cases} \text{linear confinement at large distances } V^{(R)}(r, z_0^*) = \sigma(z_0^*)r \text{ when } r(z_0^*) \text{ explodes} \\ \text{at short-distances, we want } V_{Q\overline{Q}}(r) \sim -\frac{1}{r\ln(r)} \text{ i.e. QCD running coupling }? \end{cases}$

- Supergravity corrections $O(\alpha')$: finite $O(1/\sqrt{\lambda})$ corrections
- Finite temperature QCD : $\langle \overline{q}q \rangle(T)$ chiral condensate vs. T

Conclusion

AdS/CFT provides a new way to address Physics at strong coupling

AdS/QCD: **identify** the main properties of the dual theory of QCD

- scalar glueball and meson phenomenology (masses, decay constants, condensates)
- > surprisingly close pheno. results regarding the relative simplicity of the holographic models
- scalar/vector glueball mass splitting : modification of the geometry
- consistency of the Hard Wall & Soft Wall Models
- Iarge-N behaviour (vanishing coupling constants)
- \succ S χ SB description (χ SB function v(z))
- too **drastic** modifications of AdS/CFT to gain AdS/QCD ?

Higher-dimensional gravity theory dual to QCD I we energy predictions !

Backup Slides

Holographic principle and AdS/CFT, AdS/QCD applications

• Spectroscopy and Form Factors :

Csáki et al. (hep-th/9806021); Boschi-Filho et al. (hep-th/0207071); Brodsky et al. (hep-ph/0501022)

Katz et al. (hep-ph/0510388); Kwee et al. (hep-ph/0708.4054); Grigoryan et al. (hep-ph/0703069)

• Chiral symmetry breaking mechanism & light mesons :

Evans et al. (hep-th/0306018) ; Erlich et al. (hep-ph/0501128) ; Da Rold & Pomarol (hep-ph/0510268)

• Wilson loop and Heavy quarkonium $Q\overline{Q}$ potential :

Maldacena (hep-th/9803002) ; Rey & Yee (hep-th/9803001) ; Sonnenschein et al. (hep-th/9803137) Andreev & Zakharov (hep-ph/0604204) ; **F. Jugeau (hep-ph/0812.4903)**

• Heavy-light mesons :

Erdmenger et al. (hep-th/0605241) : Herzog et al. (hep-th/0802.2956)

• Baryons :

Hong et al. (hep-ph/0609270) ; Sakai & Sugimoto (hep-th/0701280); Pomarol & Wulzer (hep-ph/0904.2272)

• Quark-gluon plasma :

Son et al. (hep-th/0405231) ; Kiritsis et al. (hep-th/0812.0792)

• Deep Inelastic Scattering : Braga et al. (hep-th /0807.1917)

• Condensed matter systems (quantum Hall effect, superconductor, superfluidity) :

Herzog, Kovtun & Son (hep-th/0809.4870); Hartnoll, Herzog & Horowitz(hep-th/0810.1563)

- Warped extra dimension Electroweak Physics models Gherghetta et al. (hep-ph/0808.3977)
- Astrophysics : Holographic Dark Matter Model
 - Li (hep-th/0403127)

Freezing behaviour of QCD effective charges at low Q²

(Deur, Burkert, Chen & Korsch, Phys. Lett. B665:349-351, 2008)

Lattice QCD, theoretical calculations and phenomenological models

• <u>Large q² limit of the 2-point correlation function</u> : pert. contr. + power corrections (condensates)

$$\begin{aligned} \frac{2}{2}, \hat{z}^2 \end{pmatrix} &= A \, \widetilde{K}_1 \left(\frac{q^2}{c^2}, \hat{z}^2 \right) + B \, \widetilde{K}_2 \left(\frac{q^2}{c^2}, \hat{z}^2 \right) \cdot \frac{1}{8} \left[-\ln(\frac{q^2}{\nu^2}) + 2 - 2\gamma_E + \ln 4 \right] \\ &+ q^2 \left[-\frac{c^2}{2} \ln(\frac{q^2}{\nu^2}) + \frac{c^2}{4} \left(1 - 4\gamma_E + 2\ln 4 \right) \right] \\ &+ \frac{c^4}{6} \left(12\eta_0 - 5 \right) + \frac{2c^6}{3} \frac{1}{q^2} - \frac{4c^8}{15} \frac{1}{q^4} + O\left(\frac{1}{q^6}\right) \end{aligned}$$

> 2-dim. condensate (absent in QCD since $< A^2 >$ is not gauge invariant)

$$\Rightarrow \text{ 4-dim. gluon condensate : } \left\{ \frac{\langle \frac{\alpha_s}{\pi} G^2 \rangle = \frac{4\alpha_s}{\pi^3} \left(2\eta_0 - \frac{5}{6} \right) c^4}{\pi^3} \right\} \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \Pi_S^{(AdS)}(0) = \frac{R^3}{k} 2\eta_0 c^4 \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle \frac{\alpha_s}{\pi} G^2 \rangle \\ \text{ bow Energy Theorem : } \\ \Pi_S^{(QCD)}(0) = -16\beta_0 \langle$$

$$f_\pi^2 m_\pi^2 = 2m_q \,\sigma$$

(pseudo-scalar 2-point correlator)

$$v_{s.w.}(z) = \frac{m_q}{Rc} \Gamma(3/2) (cz) U(1/2; 0; c^2 z^2) + B (cz)^3 {}_1 F_1(3/2; 2; c^2 z^2) \xrightarrow[z \to \infty]{} const.$$

f(u) not bounded from above : NO GMOR relation (other mechanism ?)

More about the Operator/Field correspondence

AdS/QCD spectrum of ρ meson (Son et al. '05)

AdS/QCD Model of light glueballs (scalar, vector)

boundary bulk I^{PC} 0⁺⁺ TrF^2 (Δ =4) \implies X(x,z) (p=0) $m_5^2 = 0$ 1⁻⁻ $Tr(F(DF)F)_{\mu}$ (Δ =7) \implies $A_M(x,z)$ (p=1) $m_5^2 = 24$ Scalar glueball Vector glueball $\mathsf{AdS/CFT} \begin{cases} A(x^M) = \int_{M^4} d^4 x' K(x^M, x'^\mu) A_0(x'^\mu) \\ m_5^2 = (\Delta - p)(\Delta + p - 4) \end{cases} \xrightarrow{\mathsf{AdS/QCD}} \begin{cases} A(x^M) \not > A_0(x^\mu) \\ m_5^2 = m_{AdS}^2 \end{cases}$ $S_5^{eff} = -\frac{1}{2} \int d^5x \sqrt{-g} e^{-\phi(z)} g^{MN} (\partial_M X) (\partial_N X)$ • Scalar bulk field : **d**: $S_5^{eff} = -\frac{1}{2} \int d^5x \sqrt{-g} e^{\phi(z)} \left[\frac{1}{2} g^{MN} g^{ST} F_{MS} F_{NT} + m_{AdS}^2 g^{ST} A_S A_T \right]$ 5-dim. bulk **Dilaton** $\phi(z) = a^2 z^2$ Bulk field m • Vector bulk field : Bulk field mass

• Broken AdS isometries/conformal sym. (energy scale [a]=1) $F_{MS} = \partial_M A_S - \partial_S A_M$

• Regge behaviour of the mass spectrum

Perturbed background

Decay constants of glueballs

Operator/field correspondence :
$$e^{iS_{5}^{eff}[X(x,z)]} = \langle e^{i\int d^{4}xX_{0}(x)O(x)} \rangle_{CFT}$$

2-points correlator function $\Pi(q^{2}) \longrightarrow$ Decay constant $\int_{n} = \langle 0|O(0)|n \rangle$
 $\Pi_{\text{occ}}(q^{2}) = \Pi_{\text{AdS}}(q^{2})$
• QCD : $\Pi_{QCD}(q^{2}) \equiv i\int d^{4}x e^{iq.x} \langle 0|T[O(x)O(0)]|0 \rangle$
Completeness in the 2 chronological order : $\Pi_{QCD}(q^{2}) = \sum_{n} \frac{f_{n}^{2}}{q^{2} + m_{n}^{2}}$
• AdS : $\Pi_{AdS}(q^{2}) = \left(\frac{\tilde{X}(q, z), \partial_{z}\tilde{X}(q, z)}{q}\right)\Big|_{z \to 0} \longrightarrow$ Bulk-to-boundary propagator
Fourier transf. of X(x,z)

Bulk-to-boundary propagator (massless scalar bulk field) :

$$X(x,z) = \int_{M^4} d^4x' \underbrace{K(x,z;x',0)}_{} X_0(x')$$

Boundary translation invariance : $K(x - x'; z, 0) \xrightarrow{z \to 0} \delta^4(x - x')$

 $\tilde{X}(q,z) = \tilde{K}(q,z)\tilde{X}_0(q)$ with $\tilde{K}(q,z) \xrightarrow{\mathbf{z} \to 0} 1$ (massless scalar)

$$\square \land AdS(q^2) = \tilde{K}(q,z) \left(\frac{e^{-\phi(z)}}{z^3} \right) \partial_z \tilde{K}(q,z) \Big|_{z \to 0}$$

• $q^2 = -m_n^2$ normalizable bulk mode $\tilde{K}_n(z)$ \Longrightarrow dual to particle states $z \to 0$ $\tilde{K}_n(z) \sim A_n z^4$

• $q^2 > 0$ non-normalizable bulk mode $\tilde{K}(q, z)$ \Longrightarrow dual to currents (virtuality) (deep inelastic limit : $q^2 \to \infty$) $z \to 0$ $\tilde{K}(q, z) \sim 1$

eq. of motion :
$$DK_n(z) = \left[\partial_z \left(\frac{e^{-\phi}}{z^3}\partial_z\right) + m_n^2 \frac{e^{-\phi}}{z^3}\right] \tilde{K}_n(z) = 0$$
 $q^2 = -m_n^2$
Sturm-Liouville operator completeness
Green's function : $DG(q^2; z, z') = -\delta(z - z')$

function :
$$\mathcal{D}G(q^2; z, z') = -\delta(z - z')$$

$$G(q^2; z, z') = \sum_n \frac{\tilde{K}_n(z)\tilde{K}_n(z')}{q^2 + m_n^2}$$

 \tilde{K} Green's theorem :

$$\tilde{K}(q,z) = \tilde{K}(q,z') \left(\frac{e^{-\phi(z')}}{z'^3}\right) \partial_{z'} G(q^2,z',z) \Big|_{z' \to 0}$$

Heavy-light meson spectum (Evans et al. '06)

