

Lasers

M. Turconi

From 2nd to 3rd generation of GW detectors

Lasers

	ET- LF	ET-HF	AdV+ Phase 1
Longueur bras	10 km	10 km	3 km
Puissance entrée	3 W	500 W	25-40 W
Longueur d'onde	1550 nm?	1064 nm	1064 nm
Matériau mirroir	Silicium?	silice	Silice
Diamètre mirroirs	45 cm	62 cm	35 cm
Niveau de squeezing	10 dB	10 dB	4.5 dB

From 2nd to 3rd generation of GW detectors

Lasers

	ET- LF	ET-HF	AdV+ Phase 1
Longueur bras	10 km	10 km	3 km
Puissance entrée	3 W	500 W	25-40 W
Longueur d'onde	1550 nm?	1064 nm	1064 nm
Matériau mirroir	Silicium?	silice	Silice
Matériau mirroir Diamètre mirroirs	Silicium? 45 cm	silice 62 cm	Silice 35 cm

ET Design Report ET-0007A-20

From 2nd to 3rd generation of GW detectors

Lasers

	ET- LF	ET-HF	AdV+ Phase 1
Longueur bras	10 km	10 km	3 km
Puissance entrée	3 W	500 W	25-40 W
Longueur d'onde	1550 nm?	1064 nm	1064 nm
Matériau mirroir	Silicium?	silice	Silice
Diamètre mirroirs	45 cm	62 cm	35 cm
Niveau de squeezing	10 dB	10 dB	4.5 dB
Laser output power	5 W	700 W	70 W

This presentation

ET Design Report ET-0007A-20

Not just a High-Power Laser

Continuous wave (CW), low power noise.

• Single-frequency.

Linearly-polarized Gaussian mode.

Long term stability (power and pointing).

Evolution of Laser Power

Evolution of Laser Power

Non Planar Ring Oscillators (NPRO)

 Injection-locking schemes with NPRO as master or NPRO-seeded solid-state amplifiers

Evolution of Laser Power

Non Planar Ring Oscillators (NPRO)

 Injection-locking schemes with NPRO as master or NPRO-seeded solid-state amplifiers

Fiber amplifiers

High-Power Fiber Amplifier for AdV+

AZURLIGHT

• The same fiber has been tested at 350 W [C. Dixneuf et al. Optics Express 28, 8 (2020)]

Relative Intensity noise (RIN)

Frequency noise

Beam pointing

Beam quality

Long term behaviour

First Fiber Amplifier in a GW detector

How to reach 700 W for ET-HF?

Can fiber-amplifier technology double the output power keeping the stability requirements? When?

How to reach 700 W for ET-HF?

Mach-Zehnder interferometer

Phase of Amplifier 1 wave is adjusted to have constructive interference on the bright port

How to reach 700 W for ET-HF?

Coherent Beam Combination (CBC) Amplifier1 Mach-Zehnder interferometer Phase of Amplifier 1 wave is 50/50 adjusted to have constructive Beam Splitter Dark port interference on the bright port Amplifier 2 Pick-off plate Promising results with fiber amplifiers: 40 W+ 40 W: L. Wei et al. Optics Lett. 41, 24 (2016) 200 W+ 200 W: LIGO-DCC: G2001526-v2 (2020)

Bright port

Prestabilization

Prestabilization

Prestabilization

Summary

- ET-HF is very similar to 2^{nd} generation detectors \rightarrow same laser prestabilization scheme.
- Fiber based master-oscillator power-amplifiers are privileged choice for ET-HF
- ARTEMIS laboratory has installed the first fiber amplifier at 130 W on VIRGO (AdV+) last summer.
 - > promising results on a single amplifiers and on coherent beam combination

• ET-LF wavelength must be fixed, different technologies are available. 1550 nm fiber laser is the most spread.

 WP II.3 Lasers is forming a working group to define the prestabilized laser requirements and technical design.