Input Output Optics

M. Was

LAPP/IN2P3 - Annecy

Input Output Optics

- Work Package co-chairs
 - Keiko Kokeyama, Cardiff University, UK
 - Michal Was, LAPP, Annecy, France
- Input Optics
 - Add radio-frequency sideband for control purposes
 - Transition from air to vacuum
 - Filter frequency and amplitude noise of laser
 - ► Take beam from laser to interferometer
- Output Optics
 - ► Take beam from interferometer to sensors
 - Filter higher order modes and radio frequency sidebands
 - \blacktriangleright Low losses to have effective squeezing $\lesssim 5\%$ in total
- Most optics suspended in vacuum, motion $< 1 \ \mu m/s$
- Back scattered light is a critical issue

Michał Was () CAPP ET ET

Input Optics - Advanced Virgo example

Output Optics - Advanced Virgo example

• Example of main output port, benches on 4 other output ports

Michał Wąs () ET ET ET 2021 Feb 4

4/13

Wavelength and challenges

- ET high frequency 1064 nm
 - Well known in the gravitational wave community
 - ► Hope improvement to known technology is sufficient
 - Challenge to deal with 700 W power (10 times more)
 - Many holes already burned in Advanced LIGO/Virgo
- ET low frequency 1550 nm
 - ▶ Well known in the telecommunication industry
 - Hope most technology already available and affordable
 - Power is relatively small: 5 W
 - May be replaced by 1900-2100 nm if absorption is an issue
 - ⇒ Many technologies would need to be developped

Radio Frequency sideband creation

- Create 1% of light offset by 4-100 MHz compared to main laser beam
- Used for Pound Drever Hall technique of measuring optical cavities length
- Electro-optic modulator standard solution
 - Crystal driven by radio-frequency voltage
 - ► High voltage ~200 V
 - Crystal are small (5 mm) and with large absorption (0.1%)
 - ⇒ issues with high power density 700 W?

Michał Was () 2021 Feb 4

Input Mode Cleaner

- Suspended triangular cavity, few 100 m long, finesse ∼1000
- Could be two cavities in series
- A stage in reducing laser frequency noise, amplitude noise, beam jitter
- ullet Passive filtering above cavity pole frequency (\sim 100 Hz)
- Reference for active loops
- 300 kW circulating power?

Reference cavity

2021 Feb 4

8/13

- Rigid optical cavity
- Laser frequency reference at low frequency (\lesssim 1 Hz)
- At higher frequency 10 km arms are the reference

Output mode cleaner

9/13

- Remove higher order modes and radio frequency sidebands
- >99% of light needs to be rejected
- Low length noise
- Two different technical solution used in Advanced LIGO/Virgo

Faraday Isolator

10 / 13

- Uses magnetic field and crystal to break time reversal symmetry
- Separate back and forward propagating beams
 - Intereferometer reflection control signals
 - Squeezed light injection
- Remove interference from back scattered/reflected light
- Crystal aperture are a few cm
- High power isolator
 700 W issues with depolarization due to absorption and thermal gradients

Low loss isolator: ≤ 1%

Telescope

- ullet Beam radius on crystals, sensors is \lesssim 1 mm
- ullet Beam radius in the interferometer arms is \sim 10 cm
- Match several different optical cavities
 - Laser to input mode cleaner
 - Input mode cleaner to interferometer arms
 - Arms to output mode cleaner
- >99.5% mode matching needed
 - alignment
 - beam size
 - astigmatism
 - higher order defects?

Michał Was () 2021 Feb 4

High power beam dumps / shutters

- Absorb 700 W continuous power
- Absorb 10 kW / 30 J flashes of 10 ms
- Shutter closing in 1 ms
- Low scatter/reflection
- In many cases in vacuum operation → heat extraction
- At 1064 nm using absorbing glass, silicon, silicon carbide
- What material to use for 1550 nm?

Input Output Optics Summary

- Input Output Optics is composed of many different optical components
- In principle well known technologies in most cases
- Increase in power will be a challenge
- Reduction of losses will be a challenge
- Might get surprises at new wavelength (1550 nm, \sim 2 μ m)
- In practice a source of many of the technical noises in interferometers
- Each individual type of component is a manageable size project

michal.was@lapp.in2p3.fr

Michał Was () CTAPP ET ET 2021 Feb 4