#### THE STOCHASTIC BACKGROUND

Tania Regimbau, LAPP ET-France workshop, 04/02/2021

## Stochastic GW Background

- A stochastic background of gravitational waves has resulted from the superposition of a large number of independent unresolved sources from different stages in the evolution of the Universe.
- Cosmological (inflation, cosmic strings, phase transitions, PBHs) or astrophysical (since the beginning of stellar activity)
- Usually characterized by the energy density in GWs:

$$\Omega_{gw}(f) = \frac{f}{\rho_c} \frac{d\rho_{gw}(f)}{df}$$

# Stochastic GW Background

- A stochastic background of gravitational waves has resulted from the superposition of a large numbe different stages in the evolution of the Universe from the Universe of the Un
- Cosmological (inflation, cosmic (since the beginning of stellar acti
- Usually characterized by the ener

$$\Omega_{gw}(f) = \frac{f}{\rho_c} \frac{d\rho_{gw}(f)}{df}$$



# Stochastic GW background

#### = superposition of overlapping unresolved sources

Noise



Symphony of the Universe



### Data Analysis Principle

Search for excess of coherence in the cross correlated data streams from multiple detectors with minimal assumptions on the morphology of the signal.

- Assume stationary, unpolarized, isotropic and Gaussian stochastic background.
- Cross correlate the output of detector pairs to eliminate the noise:

#### **Cross Correlation Statistics**

- Standard CC statistics (Allen & Romano, 1999, PRD, 59, 102001)
- Frequency domain cross product:  $Y = \int \tilde{s}_1^*(f) \tilde{Q}(f) \tilde{s}_2(f) df$

• optimal filter: 
$$\tilde{Q}(f) \propto \frac{\gamma(f)\Omega_{gw}(f)}{f^3 P_1(f) P_2(f)}$$
 with  $\Omega_{gw}(f) \equiv \Omega_0 f^{\alpha}$ 

in the limit noise >> GW signal

Mean(Y) =  $\Omega_0 T$ , Var(Y) =  $\sigma^2 \propto T$ , SNR  $\propto \sqrt{T}$ 

### **Overlap Reduction Function**

Loss of sensitivity due to the separation and the relative orientation of the detectors.



#### Astrophysical Backgrounds



# Background from CBCs

- LIGO and Virgo have already observed 50 BBHs and 2 BNSs in 01/02/03a.
- The events we detect now are close and loud individual sources. Many more sources at larger distances contribute to create a stochastic background.
- Using mass distributions and local rates derived from observations, we are able model to the GW background from BBHs and BNSs.
- Other predictions based on population models (Dvorkins, Périgois ...)
- The detection of this background could be the next milestone for LIGO/Virgo.

## **Predictions from LVK**

Detected after a few years of observation at design sensitivity by 2G detectors



LVK collaboration, arXiv:2101.12130

## Possible extra contribution from Pop III



Perigois et al. (starTrack): arXiv:2101.12130

# Residual background in 2G and 3G

The background from CBCs is not continuous/Gaussian and sources are separated in the parameter space (see Meacher et al. <u>arXiv:1511.01592</u>)



Perigois et al. (starTrack): arXiv:2101.12130

# Residual background in 2G and 3G

The background from CBCs is not continuous/Gaussian and sources are separated in the parameter space (see Meacher et al. <u>arXiv:1511.01592</u>)



Perigois et al. (starTrack): arXiv:2101.12130

## Detection



Perigois et al. (starTrack): arXiv:2101.12130

|          | HLV | HLVIK | ET   | ET+2CE | LISA |
|----------|-----|-------|------|--------|------|
| pop I/II | 0.8 | 1.1   | 60   | 0.02   | 62   |
| pop III. | 7.2 | 8.6   | 1481 | 334    | 1587 |
| Total    | 7.2 | 8.7   | 1482 | 334    | 1588 |

## Remove the astrophysical background

Observe the cosmological/astrophysical backgrounds below



• Performed mock data challenges to test waveform subtraction methods Error on recovered parameters  $\Omega_{GW} = \Omega_{cbc, rec} + \Omega_{error} + \Omega_{cbc, unres} + \Omega_{cosmo} + \Omega_{astro, r}$ subtracted undetected

# Remove the astrophysical background



# Conclusion

- The background from CBCs has a good chance to be detected in the next years.
- With ET the goal wil be to subtract it to recover the cosmological backgrounds
- Probe the anisotropy of the GWB (Cusin et al., Jenkins et al.)
- Remove correlated noise (i.e magnetic noise)
- Search for GWB with null stream





Jenkins & Sakellariadou, arXiv:1802.06046

## Background from CBCs

Energy density in GWs for a population k (BBH, BNS or BH-NS)

$$\Omega_{GW}(f,\theta_k) = \frac{f}{\rho_c} \int d\theta_k P(\theta_k) \int_0^{10} dz R_m^k(z,\theta_k) \frac{\frac{dE_{gW}}{df}(\theta_k,f(1+z))}{4\pi r^2(z)}$$
  
Rate Spectral properties of individual sources

with distribution  $P(\theta_k)$  in the parameter space  $\theta_k = (m_1, m_2, \chi_{eff})$