GRAVITATIONAL WAVES FROM NEUTRON STARS IN THE ET ERA

Jérôme Novak (jerome.novak@obspm.fr)

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université PSL

in collaboration with M Oertel, A Fantina, F Gulminelli & C Mondal

Workshop ET France, February 4th 2021

WHERE IN FRANCE?

NEUTRON STAR PHYSICS AND OBSERVATIONS

NUCLEAR PHYSICS (IN2P3)

- GANIL Caen
- IJC Lab Orsay
- IP2I Lyon
- LPC Caen

THEORY (INP)

- IAP / GReCo Paris
- LMPT Tours
- LUTh Meudon

ASTROPHYSICS (INSU)

- AIM Saclay
- CENBG Bordeaux (IN2P3)
- IAP / High Energy Paris
- IPAG Grenoble
- IRAP Toulouse
- LPC2E Orléans
- LUTh Meudon
- ObAS Strasbourg

NEUTRON STARS Introduction

- end-products of stellar evolution during core-collapse supernova events
- predicted as such by Baade & Zwicky 1934
- first observed as a radio pulsar in 1967
- complex structure, with density around nuclear saturation density $\rho_0 \simeq 2.7 \times 10^{14} \text{ g cm}^{-3}.$

Credits: Isaac Vidaña

NEUTRON STARS

QCD PHASE DIAGRAM

Macroscopic objects with extreme density \Rightarrow probe matter in conditions where the strong interaction is dominant

Which hadrons? Transition to quark matter?

NEUTRON STARS Observations

Over 2000 pulsars have been observed + accreting neutron stars

- pulsar \Rightarrow spin period, magnetic field, age
- binary system \Rightarrow mass
- accretion, light bending
 - \Rightarrow crust properties, radius

Electromagnetic signals coming from the surface or above \Rightarrow model-dependent.

Many constraints have already been put, but interior (core) composition remains largely unknown.

BINARY NEUTRON STARS GRAVITATIONAL WAVES

GW can bring information from the inside of neutron stars!

- GW170817 and following put first constraints from GW to neutron star's equation of state
- determination of tidal deformability Λ: a parameter entering the waveform post-Newtonian templates for the inspiral phase
- gives a constraint, not the equation of state $p(\rho)$

LVC: Abbott et al. (2018)

BINARY NEUTRON STARS

POST-MERGER SCENARIOS

Post-merger phase not detected yet with GW...

- formation of a long lived metastable neutron star
- differential rotation, $T \neq 0$ effects, neutrinos, magnetic field, ...
- much richer than the inspiral phase
- but complicated numerical models
- ⇒ explore larger space of the QCD phase diagram (T > 0, out of β -equilibrium)

Metzger (2019)

 \Rightarrow GW from oscillations of the (hyper-)massive neutron star

BINARY NEUTRON STARS Phase-transition signatures

Two examples showing possibilities of characterizing a phase transition

Bauswein et al. (2019)

Weih et al. (2020)

Probe of different regions of QCD diagram than heavy-ion colliders.

BH-NS BINARIES

Different scenarios: tidal disruption / plunge of the neutron star

Kyutoku et al. (2011)

Depends on many parameters, including the equation of state

Core-collapse supernovae

Rare detectable events: galactic supernova ?

Torres-Forné et al. (2019)

Identification of GW emitting modes can provide information about mass & radius of the proto-neutron star

 \Rightarrow may be difficult to deduce properties of the underlying equation of state (Préau *et al.* 2021)

CONTINUOUS WAVES

- principal source of continuous GW are spinning neutron stars, deformed
- deformation comes from non-axisymmetric deformation (w.r.t rotation axis)
- magnetic field, "mountains" in the crust, accretion, *r*-mode instability, ...
- not detected yet, but well-identified sources (pulsars)

constraints on some sources below the spin-down limit

 \Rightarrow detection may bring valuable information on the crust

CONCLUSIONS

- neutron stars represent incredible probes for matter at extreme (nuclear) densities
- O2 and O3 results from LVC/LVK have shown the huge potential for neutron star physics
- ET would not only improve on these results: allow for exploring the post-merger phase of binary neutron star coalescence
- more than mere constraints on the equation of state: phase transition, temperature effects, etc probe the QCD phase diagram
- + improvement on the probability of observing other sources: core-collapse supernovas, spinning neutron stars, with different type of information

 \Rightarrow For binary neutron stars ET can bring good characterization of masses and spins (low frequencies) + follow-up of post-merger phase (high frequencies).