GRAVITATIONAL WAVES FROM NEUTRON
STARS IN THE ET ERA

Jéréme NOVak (jerome.novak@obspm.fr)

Laboratoire Univers et Théories (LUTH)
CNRS / Observatoire de Paris / Université PSL

in collaboration with M Oertel, A Fantina, F Gulminelli & C Mondal

Workshop ET France, February 4" 2021


http://www.luth.obspm.fr

WHERE IN FRANCE?

NEUTRON STAR PHYSICS AND OBSERVATIONS

NUCLEAR PHysics (IN2P3) ASTROPHYSICS (INSU)

e GANIL — Caen o AIM - Saclay
D LG = By o CENBG - Bordeaux (IN2P3)
e IP2I — Lyon o IAP / High Encrey  Paris
° LPC~ Cacn ‘ o IPAG — Grenoble
e IRAP - Toulouse
o IAP / GReCo — Paris e LPC2E - Orléans
e LMPT — Tours o LUTh — Meudon
o LUTh — Meudon @ ObAS — Strasbourg )

A\




end-products of stellar
evolution during
core-collapse supernova
events

predicted as such by Baade
& Zwicky 1934

first observed as a radio
pulsar in 1967

complex structure, with
density around nuclear

saturation density

po =~ 2.7 x 10" g ecm ™3,

NEUTRON STARS

INTRODUCTION

Atmosphere

Inner crust:

nuclei + neutrons + ¢~ Outer crust:

“'pasta” structures nuclei + ¢

Inner core:
Meson condensates

Outer core:
Uniform nuclear matter
n+p+e+p

Hyperons ?
Quarks ?
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NEUTRON STARS
QCD PHASE DIAGRAM
Macroscopic objects with extreme density = probe matter in
conditions where the strong interaction is dominant
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Which hadrons? Transition to quark matter?



NEUTRON STARS

OBSERVATIONS

Over 2000 pulsars have been observed + accreting neutron stars
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@ pulsar = spin period,
magnetic field, age

@ binary system = mass

@ accretion, light bending
= crust properties, radius

Electromagnetic signals coming
from the surface or above =
model-dependent.

Many constraints have already been put, but interior (core)

composition remains largely unknown.



BINARY NEUTRON STARS

GRAVITATIONAL WAVES

GW can bring information from the inside of neutron stars!

o GW170817 and following put
first constraints from GW to
neutron star’s equation of
state

o determination of tidal
deformability A: a parameter
entering the waveform
post-Newtonian templates for
the inspiral phase

@ gives a constraint, not the
equation of state p(p)
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BINARY NEUTRON STARS
POST-MERGER SCENARIOS
Post-merger phase not detected yet with GW. ..

o formation of a long
lived metastable
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e much richer than the

H
E

E,,,,=lIQ =10’ erg( P ) =
2 0.8 ms =

Metzger (2019) inspiral phase
@ but complicated
numerical models
= explore larger space of the QCD phase diagram (7" > 0, out
of -equilibrium)
= GW from oscillations of the (hyper-)massive neutron star



BINARY NEUTRON STARS

PHASE-TRANSITION SIGNATURES

Two examples showing possibilities of characterizing a phase

transition
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Bauswein et al. (2019)
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Weih et al. (2020)

Probe of different regions of QCD diagram than heavy-ion

colliders.
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Different scenarios: tidal disruption / plunge of the neutron star
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Kyutoku et al. (2011)

Depends on many parameters, including the equation of state
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CORE-COLLAPSE SUPERNOVAE

Rare detectable events: galactic supernova ?
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Identification of GW emitting modes can provide information
about mass & radius of the proto-neutron star

= may be difficult to deduce properties of the underlying
equation of state (Préau et al. 2021)



CONTINUOUS WAVES

@ principal source of continuous
GW are spinning neutron stars,
deformed

o deformation comes from
non-axisymmetric deformation
(w.r.t rotation axis)

e magnetic field, “mountains” in

the crust, accretion, r-mode
instability, ...

@ not detected yet, but
well-identified sources (pulsars)

constraints on some sources below the spin-down limit

= detection may bring valuable information on the crust



CONCLUSIONS

@ neutron stars represent incredible probes for matter at
extreme (nuclear) densities

e 02 and O3 results from LVC/LVK have shown the huge
potential for neutron star physics

o ET would not only improve on these results: allow for
exploring the post-merger phase of binary neutron star
coalescence

e more than mere constraints on the equation of state: phase
transition, temperature effects, etc probe the QCD phase
diagram

e + improvement on the probability of observing other
sources: core-collapse supernovas, spinning neutron stars,
with different type of information

= For binary neutron stars ET can bring good characterization
of masses and spins (low frequencies) + follow-up of
post-merger phase (high frequencies).



