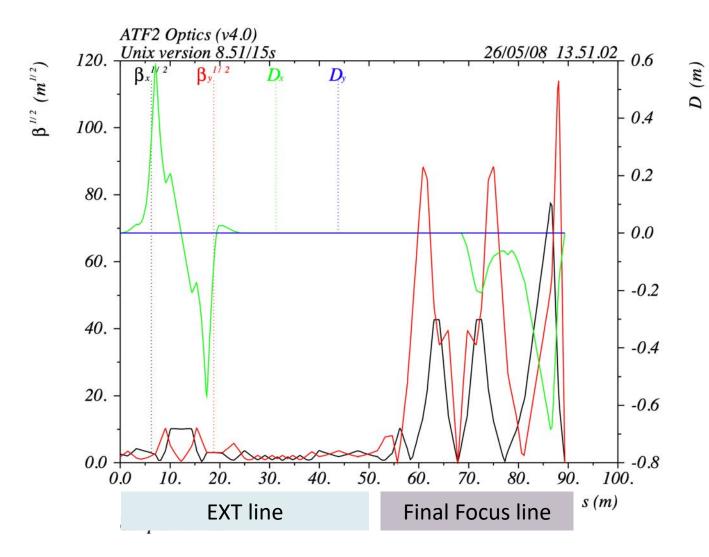
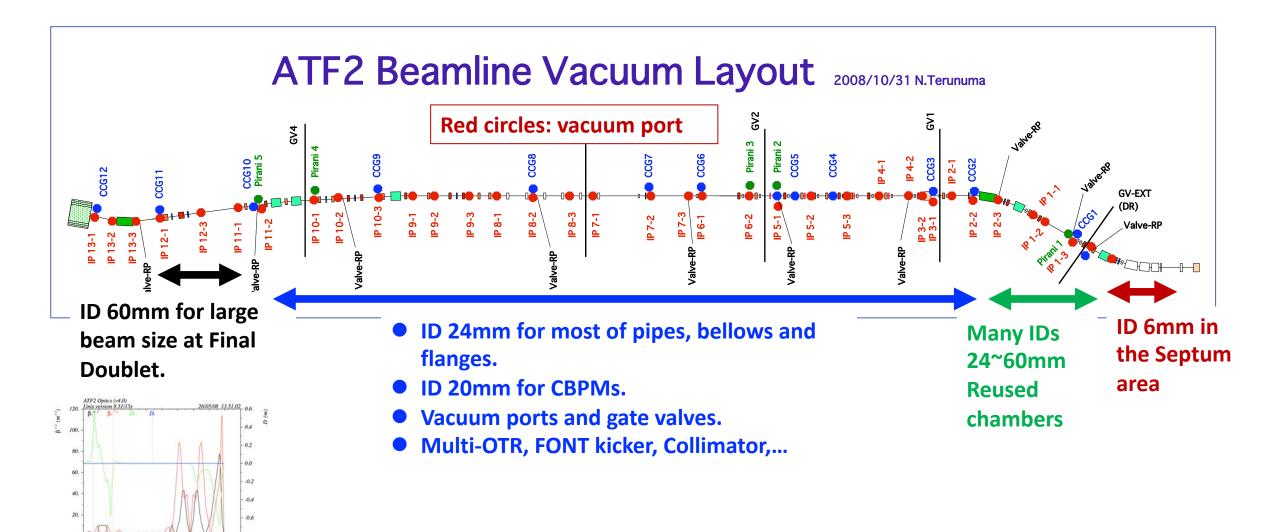
Information for ATF3 discussion:

Current and possible upgrades and cost estimation for vacuum chambers (including magnets)


Nobuhiro Terunuma, KEK

2020/11/6 ATF3 meeting

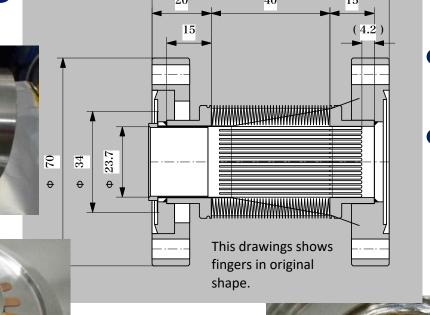

Backgrounds

- Most of the present EXT-FF vacuum chambers are reused and duplicated from previous EXT beamline.
- The inner diameter of the beam pipe is 24 mm, which is same as that of DR, and designed to fit DR magnets with a bore diameter of 32 mm. The magnets for the BT, EXT and FF beamlines are copies of the DR, then a vacuum chamber with an ID of 24 mm became the standard for ATF.
- Due to additional features, limited space and manufacturing difficulties, the special sections use different cross sections.
- The wakefield on the EXT line was not taken seriously as the beam passed once, while that on the DR was considered because of the multi-turn of 2 MHz.
- Under this background, we found the significant intensity dependency on the small beam size at ATF2 and conducted many wakefield studies

ATF2 beamline

- Mitigation of the wakefield was conducted for the Final Focus section (large beta section).
- Replaced some of CBPMs, bellows and flanges to the straight pipes.
- Shield contacts were added to the bellows and flanges, to minimize the gaps and crosssection changes.
- They are not desired and effective way (?).
- Need redesign for mitigation including the EXT line.

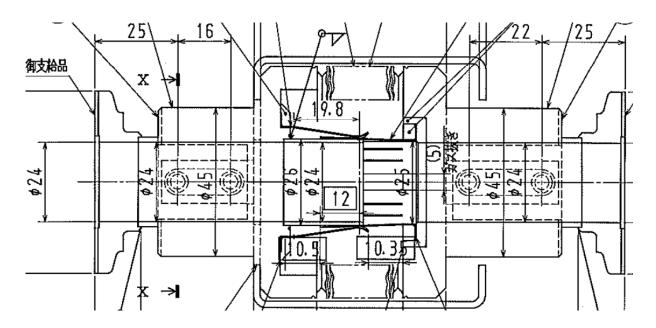
Wakefield Sources

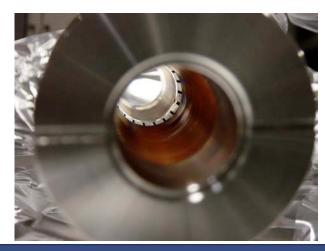

TABLE II. Summary of the peak and weighted average normalized wake potential calculated from a single offset of 1 mm for a bunch length of 7 mm. The quantities indicated are the approximate situation in spring 2013.

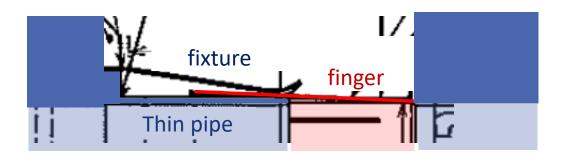
Component	$ W_{n,\mathrm{peak}} $ V/pC/mm	$ W_{n,avg} $ V/pC/mm	Quantity
Bellows	0.1	0.06	~100
Vacuum flanges + step	0.06	0.04	~100
Vacuum flanges	0.03	0.02	~100
C-band position	0.11	0.06	~40
C-band reference	0.15	0.09	4
Vacuum ports	0.07	0.05	6

In EXT,

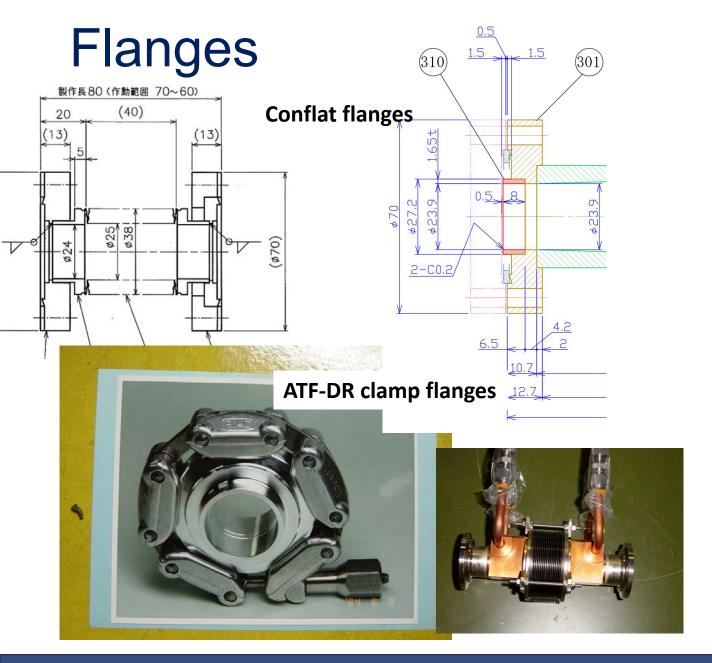
- Septum
- Bend chambers
- FONT kickers
- Stripline BPMs
- Many type of pipes

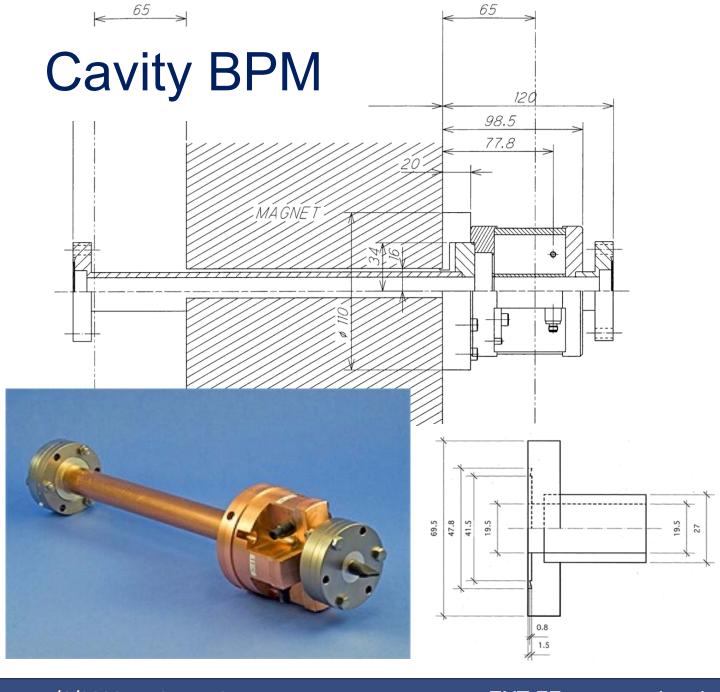

Bellows


- We have many types of bellows in length and diameter. Typical ID clearance is 24mm.
- Some of them are too far from the edge of flange to allow the RF shield to be attached.
- Only short bellows (standard in ATF2) units can have an RF shield inside.


- Even if the bellows are deformed, the contact finger must still touch the pipe.
 That is, if there is an offset and angle between both flanges.
- The fingers are bent and not a straight.
- Not desired shapes.
- Need more space for shield structure
 → see DR bellows

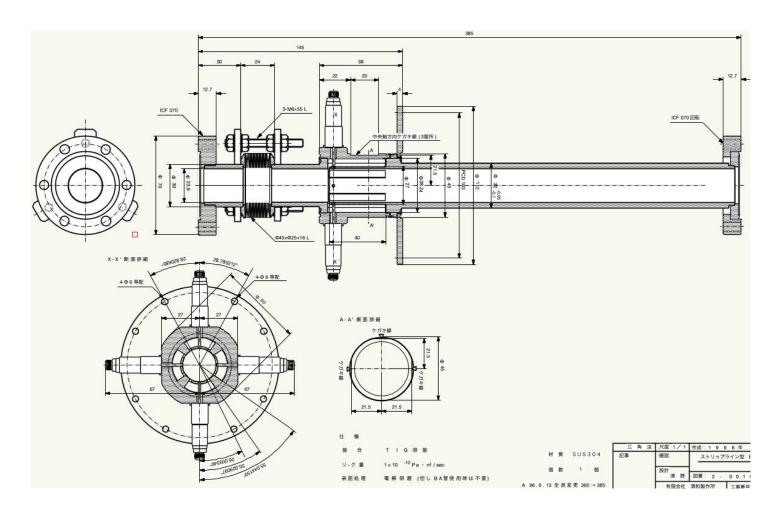
Bellows for ATF DR



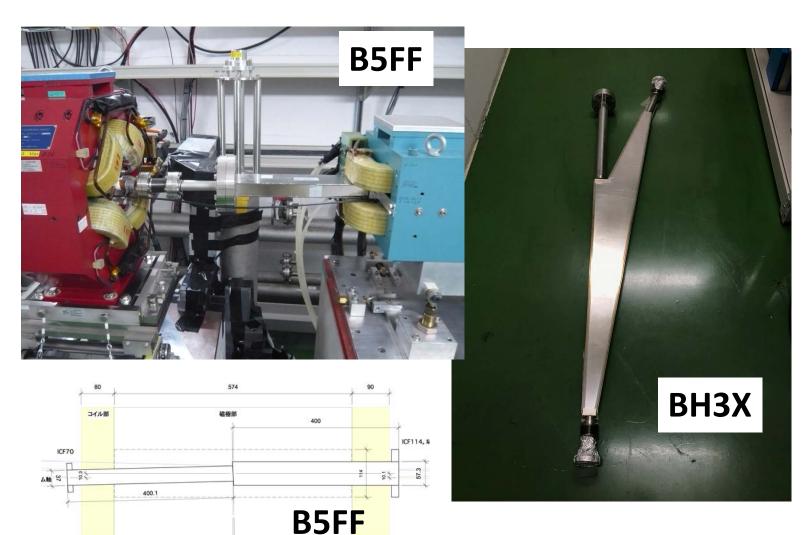


- Wider bellows
 - → room for structure of shield fingers
- Finger touches the thin pipe from outside
- Fixtures push fingers to the pipe
- No un-wanted structure inside the pipe
- Complicated and expensive but better shielding
- Can be applied for FF bellows

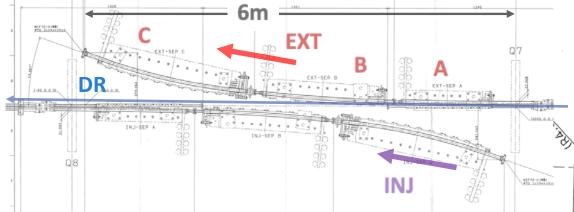
(EXT-FF does not require the cooling pipes.)



- Conflat flanges are used for EXT and FF.
- Dimensions of flange are defined only for the knife-edge and fixtures, and not for others such as gap between two flanges, and joint for a pipe. It brings different gap by manufactures.
- As a result, it becomes hard to put good shield piece in each flange gaps. weak mechanical and electric contact.
- Shielding a gap of rotating flange becomes much harder.
- ATF DR uses a clamp chain flanges customized by EVAC co. Itd., and no gap in connection.
- It will be desired to use it for ATF3.


- We have no way to remove the cavity itself. Replacing flanges is also difficult. No welding and brazing again.
- Use CBPM as it is.
- Each CBPM flange has 1.5mm gap. It brings 3mm gap when connected.
- In addition, pipe diameter is 20mm, not 24mm.
- We may need a taper for different diameter, and a peace to fill gaps.

Stripline BPMs


- There are many stripline BPMs with different length of electrodes, chamber length etc.
- Some stripline BPM has bellows where a shield can not be put.
- Think to use these BPMs as-is or prepare new BPMs.

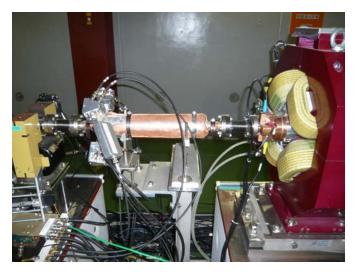
Dipole chambers (box)

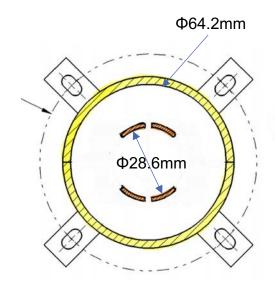
- Historically, some of dipole magnets were used to extract the Laser-Compton photons from the beamline.
- To have an electron line and photon line in the dipole, a box chamber were prepared.
- Now we do not need such photon port, then we can replace box chamber by a simple pipe chamber.

Septum chambers

- Space available in the Septum magnet is very limited.
- Beam pipe is about 7mm high and 23mm wide over 6m of the beamline, including small bellows.
- Since it is difficult to manufacture a small-diameter chamber, the septum chamber is realized by pushing and deforming the pipe.
- Pipes with different cross sections are welded to small blocks, and there are steps in cross-section.
- Septum C has a possibility to be replaced by standard dipole magnet -> get large aperture.

Nov/6/2020 ATF3 Meeting


EXI-FF vacuum chambers


DR

Circle

RaceTrack

FONT kickers

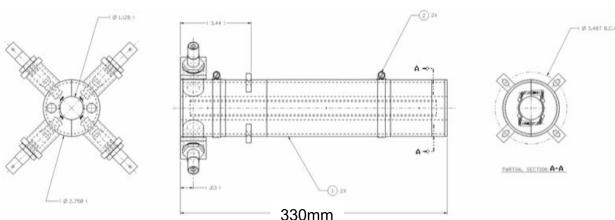
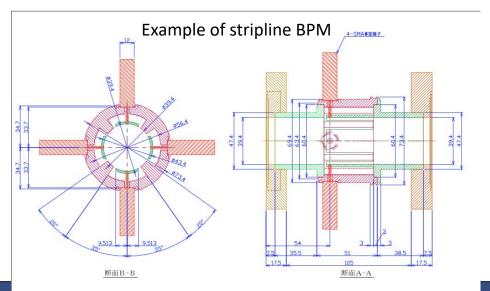



Figure 5.17: A Schematic diagram of the SLC Scavenger Post Kicker. The kicker plates are approximately 30 cm in length; measurements are in inches. Figure adapted from [112].

- FONT kicker is located in the EXT line where the beta function is relatively low.
- Gap around the electrodes are bigger so the minimization can be considered.
- Stripline kicker which gap is filled, can be designed for ATF3.

Pumping ports

- Commercially available Crosschamber is used for pumping port.
 Its ID is bigger than other pipes.
- Insert a pipe unit which diameter is 24mm and has pumping slots.
- Slots are horizontally aligned in the beamline to minimize the vertical effect of wakefield.
- Gap by flanges is not shielded at present.

Cost estimation of vacuum chambers

In the case of replacement of all chambers of EXT and FF asumming clamp flanges except for cavity and stripline BPMs.

Туре		Unit Cost k Yen	units	Total k Yen
Shielded Bellows		300	100	30,000
Taper chamber	For CBPM; ID 20mm	60	40	2,400
Bend chamber - Large	внзх	500	1	500
Bend chamber - Small	BH1X, 2X, B1, B2 and B5	100	5	500
Straight chambers		100	30	3,000
Pump port chambers	For ID 24mm	200	30	6,000
FONT kicker	Stripline kicker	500	2	1,000
Septum C	→ standard dipole	100	1	100
Others	Attachment for the gap of CBPM conflat flange,			1,000
TOTAL				44,500

Cost of clamp flange unit is included in each chambers.

(30k Yen/connection)

1 Yen ~ 0.009 CHF 1 K Yen ~ 9 CHF Then ~ 400 kCHF

Rough cost estimation of magnets

Туре		Unit Cost k Yen	units	Total k Yen
Final Doublet	QD0, QF1	3,000	2	6,000
Final Doublet (Sext)	SD0, SF1	1,500	2	3,000
Skew Sextupole	Poor assembling	1,500	4	6,000
Movers	For Skew Sextupole	2,000	4	8,000
	Renewal of motor drivers/controllers			(10,000)
Septum A, B		-	-	-
Septum C	→ Standard Dipole + PS	5,000	1	(5,000)
TOTAL				23,000 (38,000)

1 Yen ~ 0.009 CHF 1 K Yen ~ 9 CHF Then ~ 210 kCHF (~ 340 kCHF)