Multifield stochastic inflation in phase space: a manifestly covariant theory and its first principle derivation # Sébastien Renaux-Petel CNRS - Institut d'Astrophysique de Paris 1806.10126 and 2008.07497 Pinol, Renaux-Petel, Tada Meeting IEA PBH#2 # Why stochastic inflation? - Classical background + quantum fluctuations: - conceptually not satisfactory - breaks down for very light scalar fields - · Late time IR structure of correlators in (near) de Sitter, eternal inflation - Can be used to compute full pdf of curvature fluctuation (e.g. for some PBHs generation mechanism) - Stability of Higgs during inflation? • . . . ## Our work Formulate stochastic inflation in a manifestly covariant manner under field redefinitions ## Our work Formulate stochastic inflation in a manifestly covariant manner under field redefinitions $$\mathcal{L} = -\frac{1}{2}G_{IJ}(\phi^K)\partial_\mu \phi^I \partial^\mu \phi^J - V(\phi^K)$$ Fields are simply coordinates Not obvious in general that classical symmetries are maintained at the quantum level (anomalies) e.g. Vilkovisky-DeWitt variables for quantum effective action ## Our work Formulate stochastic inflation in a manifestly covariant manner under field redefinitions Beyond heuristic approach: derivation using tools of nonequilibrium quantum field theory Markovian approximation: covariant Fokker-Planck eq in phase space, and analytical formulae for noises ## I Introduction to stochastic inflation ## II Stochastic anomalies and solution # **III Path-integral derivation** disclaimer: many references in the paper, not here # Stochastic formalism Classical stochastic effective theory for coarse-grained fields Background super-Hubble modes Continuous flow of initially sub-Hubble (UV) modes joining the super-Hubble (IR) sector $$\frac{\mathrm{d}\varphi}{\mathrm{d}N} = -\frac{V'(\varphi)}{3H^2} + \frac{H}{2\pi}\xi$$ Gaussian white noise Open quantum system # Stochastic formalism classical drift (slow-roll) Many (super)-Hubble regions evolving like locally separate universes, emerging from same initial conditions **Langevin** equation $$\frac{\mathrm{d}\varphi}{\mathrm{d}N} = -\frac{V'(\varphi)}{3H^2} + \frac{H}{2\pi}\xi$$ quantum diffusion $$\langle \xi(N)\xi(N')\rangle = \delta(N-N')$$ stochastic dynamics of a representative Hubble region φ coarse-grained long-wavelength scalar field Fokker-Planck equation $$\frac{\partial P(\varphi, N)}{\partial N} = \mathcal{L}_{FP} \cdot P(\varphi, N)$$ probability density function of field's values at time N ## IR resummation Agreement with QFT computations (but much simpler) Woodard, Starobinsky, Rigopoulos ... Enables one to resum late time divergences of perturbative QFT e.g. in $\,\lambda \varphi^4\,$ theory in de Sitter, secular effects for $\lambda N^2 > 1$ and derive non-perturbative results, e.g. $P_{\rm eq}(\varphi) \propto e^{-8\pi^2 V(\varphi)/(3H_0^4)}$ Outstanding questions: limitations, rigorous derivation, corrections many recent works # Cosmological correlators Stochastic $\delta \mathcal{N}$ formalism: Fujita, Kawasaki, Tada, Takesako 13 Vennin, Starobinsky 15 $$P(\varphi_{\mathbf{stoc}}, N)$$ pact-dependent fields with deterministic clock invert FP equation $$\mathcal{L}_{\mathrm{F}P}^{\dagger}$$ $$P(\mathcal{N}_{\mathbf{stoc}}(\varphi))$$ patch-dependent durations of inflation, starting from progenitor patch $\mathcal{N}(arphi)$ number of e-folds of inflation realized starting from field value arphi stochastic quantity, directly related to observable curvature perturbation $$\zeta = \delta \mathcal{N} = \mathcal{N} - \langle \mathcal{N} \rangle$$ Full pdf of curvature perturbation Fujita, Kawasaki, Tada, Vennin, Starobinsky, Pattison, Assadullahi, Firouzjahi, Noorbala, Wands, Pinol, Renaux-Petel ... # Why generic multifield models? ## Many recent developments # Why generic multifield models? Many recent developments Propaganda for works in my group: with Fumagalli, Garcia-Saenz, Pinol, Ronayne, Witkowski - PBHs from strong turns in landscape - Higgs stability during inflation - Flattened NGs from strongly non geodesic motion - Generalization of Maldacena's computation to multifield inflation with curved field space Renaux-Petel, IAP # Heuristic approach $$\phi = \varphi_{\rm IR} + Q_{\rm UV}$$ $$\pi = \varpi_{\rm IR} + \tilde{P}_{\rm UV}$$ Split in Fourier-space, with IR fields only containing $$k < k_{\sigma}(N) = \sigma a H$$ $$\sigma \ll 1$$ ## Plug in classical equations of motion - + linearize in UV fields, work at leading order in gradients for IR fields - + assume usual quantization of UV fields - time-dependence of coarse graining scale - + super-Hubble squeezed state, effectively classical see Grain and Vennin 2017 in single-field (gauge and mixing with gravity also taken into account) # Heuristic approach $$\phi = \varphi_{\rm IR} + Q_{\rm UV}$$ $$\pi = \varpi_{\rm IR} + \tilde{P}_{\rm UV}$$ Split in Fourier-space, with IR fields only containing $$k < k_{\sigma}(N) = \sigma a H$$ $$\sigma \ll 1$$ $$\varphi^{I\prime} = \frac{1}{H}G^{IJ}\varpi_J + \xi^{QI}$$ $$\mathcal{D}_N \varpi_I = -3\varpi_I - \frac{V_I}{H} + \xi_I^{\tilde{P}}$$ $$3M_{\rm Pl}^2H^2=\frac{1}{2}G^{IJ}\varpi_I\varpi_J+V$$ local Friedmann constraint $$\mathcal{D}_N \varpi_I = \partial_N \varpi_I - \Gamma_{IJ}^K \varphi^{J\prime} \varpi_K$$ covariant derivative # Heuristic approach $$\phi = \varphi_{\rm IR} + Q_{\rm UV}$$ $$\pi = \varpi_{\rm IR} + \tilde{P}_{\rm UV}$$ Split in Fourier-space, with IR fields only containing $$k < k_{\sigma}(N) = \sigma a H$$ $$\sigma \ll 1$$ $$\varphi^{I\prime} = \frac{1}{H}G^{IJ}\varpi_J + \xi^{QI}$$ $$\mathcal{D}_N \varpi_I = -3\varpi_I - \frac{V_I}{H} + \xi_I^{\tilde{P}}$$ $$3M_{\rm Pl}^2H^2=\frac{1}{2}G^{IJ}\varpi_I\varpi_J+V$$ local Friedmann constraint $$\mathcal{D}_N \varpi_I = \partial_N \varpi_I - \Gamma_{IJ}^K \varphi^{J\prime} \varpi_K$$ covariant derivative Autocorrelation of noises: power spectra of UV modes in IR background, e.g. $$\langle \xi^{QI}(N)\xi^{QJ}(N')\rangle \sim \langle Q^I(N,k_{\sigma}(N))Q^J(N,k_{\sigma}(N))\rangle \delta(N-N')$$ Take real noises by hand, this is proved in path-integral derivation #### non-Markovian only with Markovian approximation → FP equation ## Stochastic calculus Langevin equation: $$\frac{\mathrm{d}X}{\mathrm{d}N} = h(X) + g(X)\xi \qquad \langle \xi(N)\xi(N') \rangle = \delta(N - N')$$ Continuous limit of discrete process: $$\Delta X_i = h(X(N_i^*))\Delta N_i + g(X(N_i^*))\Delta W_i$$ $N_i^* \in [N_i, N_{i+1}]$ X's properties depend on choice of N_i^* ## Stochastic calculus Ito $$N_i^* = N_i$$ $$dX = h \, dN + g \, dW$$ Ito's lemma: $$df(X) = f_{,X}dX + \frac{1}{2}f_{,XX}g^2dN$$ #### Stratonovich $$N_i^* = \frac{1}{2} \left(N_i + N_{i+1} \right)$$ $$dX = h \, dN + g \circ dW$$ standard chain rule $$\mathrm{d}f(X) = f_{,X}\mathrm{d}X$$ Fokker-Planck equation for P(X, N): pdf of X at time N $$\frac{\partial P}{\partial N} = \mathcal{L}_{\text{FP}} \cdot P = -\frac{\partial}{\partial X} \left(D(X)P \right) + \frac{1}{2} \frac{\partial^2}{\partial X^2} \left(g^2(X)P \right)$$ $$D_{\mathsf{T}} = h$$ $$D_{\rm S} = h + \left(\frac{1}{2}g\frac{\partial g}{\partial X}\right)$$ noise-induced drift ## Stochastic calculus # Ito versus Stratonovich for inflation Many papers: Ito 'to respect causality' (no good reason) Vilenkin 1999, Fujita, Kawasaki, Tada 2014, Tokuda & Tanaka 2017, ... Stratonovich: white noises are idealizations of colored noises smooth splitting between UV and IR modes Mezhlumian & Starobinsky 1994 Discrepancy exceeds the accuracy of stochastic formalism Vennin & Starobinsky 2015 Here: new perpective with requirement of covariance # Single-field slow-roll $$\frac{\mathrm{d}\varphi}{\mathrm{d}N} = -\frac{V'(\varphi)}{3H^2} + \frac{H}{2\pi}\xi$$ Test scalar fields (e.g. in de Sitter) $$H(\cancel{\wp})$$ — unambiguous Inflation: $$3H^2(\varphi)M_{\rm Pl}^2 = V(\varphi)$$ Ito versus Stratonovich ambiguity of multiplicative noises Difference between Ito and Stratonovich, in classical or stochastic regimes, suppressed by $V/M_{\rm Pl}^4\ll 1$ Pinol, Renaux-Petel, Tada 18 In general, e.g. with multiple fields: real issue ## Multivariate calculus Langevin equations $$\frac{\mathrm{d}X^a}{\mathrm{d}N} = h^a(X) + \sum_A g_A^a(X) \,\xi^A$$ $$\langle \xi^A(N)\xi^B(N')\rangle = \delta^{AB}\delta(N-N')$$ ## Multivariate calculus Langevin equations $$\frac{\mathrm{d}X^a}{\mathrm{d}N} = h^a(X) + \sum_A g_A^a(X) \,\xi^A$$ $$\langle \xi^A(N)\xi^B(N')\rangle = \delta^{AB}\delta(N-N')$$ Fokker-Planck equation $$\frac{\partial P}{\partial N} = \mathcal{L}_{FP}(X^a) \cdot P$$ with $$\mathcal{L}_{FP}(X^a) = -\frac{\partial}{\partial X^a} D^a + \frac{1}{2} \frac{\partial^2}{\partial X^a \partial X^b} A^{ab}$$ drift vector $$D_I^a = h^a$$ $$D_{\rm S}^a = h^a + \frac{1}{2} g_A^b \frac{\partial g_A^a}{\partial X^b}$$ diffusion matrix $$A^{ab} = g_A^a g_A^b$$ $$\frac{\mathrm{d}\varphi^I}{\mathrm{d}N} = -\frac{G^{IJ}V_{,J}}{3H^2} + \xi^I$$ with noise correlations $$\langle \xi^I(N) \, \xi^J(N') \rangle = \left(\frac{H}{2\pi}\right)^2 G^{IJ} \, \delta(N-N')$$ Slow-roll, overdamped limit Not yet well defined stochastic differential equations $$\xi^I = g_A^I \, \xi^A \qquad \text{with}$$ $$g_A^I = \frac{H}{2\pi} e_A^I \, \bigg| \,$$ and set of vielbeins $$e_A^I e_A^J = G^{IJ}$$ • Vielbeins can a priori differ by arbitrary field-dependent rotations $e_A^I \to \Omega_A^B(X) e_B^I$ Arbitrary choice of vielbeins: no impact on Ito FP equation matters for Stratonovich Field space covariance Physical quantities do not depend on field redefinitions Covariance is respected only in Stratonovich interpretation Ito lemma vs standard chain rule Statistical averages over Langevin eqs with different vielbeins Pinol, Renaux-Petel, Tada 18 $$\mathcal{L} = -\frac{1}{2}\partial_{\mu}X\partial^{\mu}X - \frac{1}{2}\partial_{\mu}Y\partial^{\mu}Y - \frac{1}{2}M_{X}^{2}X^{2} - \frac{1}{2}M_{Y}^{2}Y^{2}$$ $$P_{\rm s}(\varphi^I) = \frac{P(\varphi^I)}{\sqrt{\det(G_{IJ})}}$$ derivatives should be a scalar under field redefinitions Stratonovich: manifestly covariant FP equation Spurious dependence on the arbitrary choice of vielbeins, in curved or flat field space `Standard manipulations' are implicitly using Stratonovich + quantum theory: identification of independent noises. ## Multifield quantization: $$\hat{Q}^I(N,\mathbf{k}) = Q^I_A(N,k)\hat{a}^A_\mathbf{k} + \left(Q^I_A(N,k)\right)^*\hat{a}^{A\dagger}_{-\mathbf{k}} \qquad \left[\hat{a}^A_\mathbf{k},\hat{a}^{B\dagger}_{\mathbf{k}'}\right] = (2\pi)^3\delta^{AB}\delta^{(3)}(\mathbf{k}-\mathbf{k}')$$ Classicalisation (light fields): complex mode functions (Q_A^I, \tilde{P}_{IA}) become real outside the horizon to a very good accuracy (up to an irrelevant constant unitary matrix) $$\xi^{A}(x) \sim \int \frac{\mathrm{d}^{3}\mathbf{k}}{(2\pi)^{3}} \mathrm{e}^{i\mathbf{k}\cdot\mathbf{x}} \frac{\mathrm{d}\theta(k - k_{\sigma}(N))}{\mathrm{d}N} \left(\hat{a}_{\mathbf{k}}^{A} + \hat{a}_{-\mathbf{k}}^{A\dagger}\right)$$ commute with one another, classical independent Gaussian white noises normalized to unity inside Hubble patch $$\varphi^{I\prime} = \frac{1}{H} G^{IJ} \varpi_J + Q_A^I(N, k_\sigma(N)) \circ \xi^A$$ $$\mathcal{D}_N \varpi_I = -3\varpi_I - \frac{V_I}{H} + \tilde{P}_{IA}(N, k_\sigma(N)) \circ \xi^A$$ $$\mathcal{D}_N \mathcal{V}_I = \mathcal{V}_{I'} - \Gamma_{IJ}^K \mathcal{V}_K \circ \varphi^{J'}$$ covariant derivative Stochastic anomalies are solved, but still formal. Conversion from Stratonovich to Itô with auxiliary variables (eventually disappear): stochastically-parallel-transported vielbeins Itô: $$\mathfrak{D}_N \varphi^I = \frac{\varpi^I}{H} + \xi^{QI}, \qquad \mathfrak{D}_N \varpi_I = -3\varpi_I - \frac{V_I}{H} + \xi_I^{\tilde{P}}$$ covariant derivatives compatible with Itô calculus $$\mathfrak{D}_N \varphi^I = rac{arpi^I}{H} + \xi^{QI}, \qquad \mathfrak{D}_N arpi_I = -3 arpi_I - rac{V_I}{H} + \xi_I^{ ilde{P}}$$ Itâ $$\langle \xi^{\tilde{X}I}(N)\xi^{\tilde{Y}J}(N')\rangle \equiv A^{\tilde{X}\tilde{Y}IJ}(N)\delta(N-N') = \operatorname{Re}\mathcal{P}^{\tilde{X}\tilde{Y}IJ}(N;k_{\sigma}(N))\delta(N-N')$$ Itô-covariant derivatives = standard derivatives + (Christoffel) x (autocorrelation of noises) $$\mathfrak{D}_N arphi^I = rac{arpi^I}{H} + \xi^{QI}, \qquad \mathfrak{D}_N arpi_I = -3 arpi_I - rac{V_I}{H} + \xi_I^{ ilde{P}} \qquad \mathrm{lt\hat{c}}$$ $$\langle \xi^{\tilde{X}I}(N)\xi^{\tilde{Y}J}(N')\rangle \equiv A^{\tilde{X}\tilde{Y}IJ}(N)\delta(N-N') = \operatorname{Re}\mathcal{P}^{\tilde{X}\tilde{Y}IJ}(N;k_{\sigma}(N))\delta(N-N')$$ Itô-covariant derivatives = standard derivatives + (Christoffel) x (autocorrelation of noises) coordinates on manifold $$\mathfrak{D}\mathcal{X}^I=\mathrm{d}\mathcal{X}^I+\frac{1}{2}\Gamma^I_{JK}A^{\mathcal{XXJK}}\mathrm{d}N$$ covectors $$\mathfrak{D}\mathcal{V}_{I} = d\mathcal{V}_{I} - \Gamma_{IK}^{J}\mathcal{V}_{J}d\mathcal{X}^{K} - \frac{1}{2} \left(\Gamma_{IJ,K}^{S} + \Gamma_{IJ}^{M}\Gamma_{KM}^{S}\right)\mathcal{V}_{S}A^{\mathcal{X}\mathcal{X}JK}dN - \Gamma_{IJ}^{K}A^{\mathcal{X}\tilde{\mathcal{V}}J}{}_{K}dN$$ # Fokker-Planck equation In Markovian approximation, FP for scalar phase space pdf $P(\phi^I, \pi_I, N)$ $$\begin{split} \partial_N P &= -D_{\varphi^I} \left[\frac{G^{IJ}}{H} \varpi_J P \right] + \partial_{\varpi_I} \left[\left(3\varpi_I + \frac{V_I}{H} \right) P \right] \\ &+ \frac{1}{2} D_{\varphi^I} D_{\varphi^J} (A^{QQIJ} P) + D_{\varphi^I} \partial_{\varpi_J} (A^{Q\tilde{P}I}{}_J P) + \frac{1}{2} \partial_{\varpi_I} \partial_{\varpi_J} (A^{\tilde{P}\tilde{P}}{}_{IJ} P) \end{split}$$ $$D_{\varphi^I} = \nabla_{\varphi^I} + \Gamma_{IJ}^K \varpi_K \partial_{\varpi_J}$$ phase-space covariant derivative manifestly covariant derived from Itô-Langevin equations nontrivial consistency check + analytical approximations for noises autocorrelations (see paper) **III Path-integral derivation** # **Principles** 1) particle physics: in-out transition amplitudes ## cosmology: expectations values in in state and causal equations of motion $$|in\rangle$$ $-\infty$ $+\infty$ N $\langle in|$ $-\infty$ C^- generating functional with closed-time path contour $$C = C^+ \cup C^-$$ $$Z\left[J_{XI}\right] = \int_{C} \mathscr{D}\phi^{XI} \exp\left(iS\left[\phi^{XI}\right] + i\int \mathrm{d}^{4}x J_{XI}\phi^{XI}\right)$$ Schwinger-Keldysh (in-in) formalism #### 2) Hamitonian action $$S[\phi^{XI}] = \int d^4x \left[\pi_I \dot{\phi^I} - \mathcal{H}(\phi^I, \pi_I) \right]$$ X = position or momentum in phase space first-principle simpler for covariance well-suited to stochastic inflation (mixing with gravity with ADM) #### 3) Doubling the dofs along simple forward path $$Z = \int_{C^{+}} \mathscr{D}\phi^{XI\pm} \exp\left(iS\left[\phi^{XI+}\right] - iS\left[\phi^{XI-}\right]\right)$$ +- fields considered independent, except where time path closes: $$\phi^{I+}(+\infty) = \phi^{I-}(+\infty)$$ momenta unconstrained # 3bis) #### Keldysh basis: $$\phi^{\rm cl} = \frac{1}{2} \left(\phi^+ + \phi^- \right) \qquad \text{`classical' component}$$ $$\phi^{\rm q} = \phi^+ - \phi^- \qquad \text{`quantum' component}$$ $$\phi^{\mathbf{q}} = \phi^+ - \phi^-$$ $$S\left[\phi^{XI\mathfrak{a}}\right] = S\left[\phi^{XI\mathrm{cl}} + \phi^{XI\mathrm{q}}/2\right] - S\left[\phi^{XI\mathrm{cl}} - \phi^{XI\mathrm{q}}/2\right]$$ Rationale: there is always a solution to the saddle point eq of the Keldysh action with $\left(\frac{\phi^{\rm q}=0}{\delta \phi^{XI}}_{|\phi^{\rm cl}} = 0 \right)$ UV/IR splitting $$\phi^{XI\mathfrak{a}}(x) = \varphi^{XI\mathfrak{a}}(x) + \delta\phi^{XI\mathfrak{a}}(x)$$ $$\mathsf{IR} \quad + \quad \mathsf{UV}$$ Boundary condition at transition time: $k = \sigma a H(N_{\sigma}(k))$ $$\phi^{I\mathfrak{a}}\left(N_{\sigma}(k),\mathbf{k}\right) = \begin{cases} \delta\phi^{I\mathrm{cl}}\left(N_{\sigma}(k),\mathbf{k}\right), & \text{if } \mathfrak{a} = \mathrm{cl}, \\ \varphi^{I\mathrm{q}}\left(N_{\sigma}(k),\mathbf{k}\right), & \text{if } \mathfrak{a} = \mathrm{q}, \end{cases} \text{ see also Tokuda & Tanaka 17,18}$$ $$Z = \int \mathscr{D}\varphi^{XI\mathfrak{a}} \exp\left(iS_{\text{eff}}\left[\varphi^{XI\mathfrak{a}}\right]\right), \quad \text{with}$$ $$\exp\left(iS_{\text{eff}}\left[\varphi^{XI\mathfrak{a}}\right]\right) = \int \mathscr{D}\delta\varphi^{XI\mathfrak{a}} \exp\left(iS\left[\varphi^{XI\mathfrak{a}} + \delta\varphi^{XI\mathfrak{a}}\right]\right),$$ Too naive: path-integral should be expressed in terms of covariant objects Jacation of covariant Vilkovisky-DeWitt-type perturbations in phase space Renaux-Petel, IAP $$Z = \int \mathscr{D}\varphi^{XI\mathfrak{a}} \exp\left(iS_{\text{eff}}\left[\varphi^{XI\mathfrak{a}}\right]\right), \quad \text{with}$$ $$\exp\left(iS_{\text{eff}}\left[\varphi^{XI\mathfrak{a}}\right]\right) = \int \mathscr{D}\delta\varphi^{XI\mathfrak{a}} \exp\left(iS\left[\varphi^{XI\mathfrak{a}} + \delta\varphi^{XI\mathfrak{a}}\right]\right),$$ Too naive: path-integral should be expressed in terms of covariant objects Jacabilia Identification of covariant Vilkovisky-DeWitt-type perturbations in phase space $$\delta\phi^I = Q^I - \frac{1}{2}\Gamma^I_{JK}Q^JQ^K + \dots \qquad \text{cf Gong and Tanaka II}$$ $$\delta \pi_I = \tilde{P}_I + \Gamma_{IJ}^K \varpi_K Q^J + \Gamma_{IJ}^K Q^J \tilde{P}_K + \frac{1}{2} (\Gamma_{IJ,K}^S - \Gamma_{IR}^S \Gamma_{JK}^R + \Gamma_{IJ}^R \Gamma_{RK}^S) \varpi_S Q^J Q^K + \cdots$$ # Integrating out UV fields $$\exp\left(iS_{\text{eff}}[\varphi^{XI\mathfrak{a}}]\right) = \int \mathcal{D}Q^{\tilde{X}I\mathfrak{a}} \exp\left(iS^{(0)}[\varphi^{XI\mathfrak{a}}] + S^{(1)}[\varphi^{XI\mathfrak{a}}, Q^{\tilde{X}I\mathfrak{a}}] + S^{(2)}[\varphi^{XI\mathfrak{a}}, Q^{\tilde{X}I\mathfrak{a}}]\right)$$ $$S^{(1)} = \int \mathrm{d}^4x \, a^3 \left[\tilde{P}_I\left(\varphi^{I\prime} - \frac{\varpi^I}{H}\right) - Q^I\left(\mathcal{D}_N\varpi_I + 3\varpi_I + \frac{V_I}{H}\right)\right]$$ # Integrating out UV fields $$\exp\left(iS_{\text{eff}}[\varphi^{XI\mathfrak{a}}]\right) = \int \mathcal{D}Q^{\tilde{X}I\mathfrak{a}} \exp\left(iS^{(0)}[\varphi^{XI\mathfrak{a}}] + S^{(1)}[\varphi^{XI\mathfrak{a}}, Q^{\tilde{X}I\mathfrak{a}}] + S^{(2)}[\varphi^{XI\mathfrak{a}}, Q^{\tilde{X}I\mathfrak{a}}]\right)$$ $$S^{(1)} = \int \mathrm{d}^4x \, a^3 \left[\tilde{P}_I\left(\varphi^{I\prime} - \frac{\varpi^I}{H}\right) - Q^I\left(\mathcal{D}_N\varpi_I + 3\varpi_I + \frac{V_I}{H}\right)\right]$$ Absent in standard perturbation theory, because background fields obey classical eoms Crucial here: governs the UV-IR interactions from time-dependent coarse-graining scale # Integrating out UV fields $$\exp\left(iS_{\text{eff}}[\varphi^{XI\mathfrak{a}}]\right) = \int \mathscr{D}Q^{\tilde{X}I\mathfrak{a}} \exp\left(iS^{(0)}[\varphi^{XI\mathfrak{a}}] + S^{(1)}[\varphi^{XI\mathfrak{a}}, Q^{\tilde{X}I\mathfrak{a}}] + S^{(2)}[\varphi^{XI\mathfrak{a}}, Q^{\tilde{X}I\mathfrak{a}}]\right)$$ $$S^{(1)} = \int d^4x \, a^3 \left[\tilde{P}_I\left(\varphi^{I'} - \frac{\varpi^I}{H}\right) - Q^I\left(\mathcal{D}_N\varpi_I + 3\varpi_I + \frac{V_I}{H}\right)\right]$$ Geometric nonlinear definitions of UV fields needed to ensure covariance, despite restricting to quadratic action Configurations with $\varphi^q \neq 0$ are heavily suppressed in the path integral: computation at leading order in quantum components of IR fields ### Influence action $$S_{\text{eff}}[\varphi^{XI\mathfrak{a}}] = S^{(0)}[\varphi^{XI\mathfrak{a}}] + S_{\text{ren}}[\varphi^{XI\text{cl}}] + S_{\text{IA}}[\varphi^{XI\mathfrak{a}}]$$ influence of integrated UV fields on IR ones $$S_{\mathrm{IA}}[\varphi^{XI\mathfrak{a}}] \sim (i[\varphi^{\mathrm{q}}]^2 \mathrm{Re}\mathcal{P}^{\mathrm{UV}} + \mathcal{O}(\varphi^{\mathrm{q}})^3$$ Power spectra of UV fields in 'background' of IR classical components ### Influence action $$S_{\text{eff}}[\varphi^{XI\mathfrak{a}}] = S^{(0)}[\varphi^{XI\mathfrak{a}}] + S_{\text{ren}}[\varphi^{XI\text{cl}}] + S_{\text{IA}}[\varphi^{XI\mathfrak{a}}]$$ influence of integrated UV fields on IR ones $$S_{\mathrm{IA}}[\varphi^{XI\mathfrak{a}}] \sim (i[\varphi^{\mathrm{q}}]^2 \mathrm{Re}\mathcal{P}^{\mathrm{UV}} + \mathcal{O}(\varphi^{\mathrm{q}})^3$$ Power spectra of UV fields in 'background' of IR classical components In IR path-integral, weight of configurations with non-zero quantum components exponentially suppressed Feynman Vernon 63 $$\mathbf{e}^{iS_{\mathrm{IA}}} = \int \mathcal{D}\xi^{XI} P\left[\xi^{XI}; \varphi^{XI\mathrm{cl}}\right] \mathbf{e}^{i\int \mathrm{d}^4x\, a^3\xi^{XI} \varphi_{XI}^{\,\mathrm{q}}} \\ \sim e^{-\xi^2/(\mathrm{Re}\mathcal{P}^{\mathrm{U}V})} \qquad \text{auxiliary fields}$$ (Hubbard-Stratonovich) Gaussian weight with variance: UV power spectra # Langevin equations $$Z = \int \mathscr{D}\varphi^{XI\text{cl}} \int \mathscr{D}\xi^{XI} P\left[\xi^{XI}; \varphi^{XI\text{cl}}\right] \int \mathscr{D}\varphi^{XI\text{q}} \exp(iS^{(0)}\left[\varphi^{XI\mathfrak{a}}\right] + i \int d^4x \, a^3 \xi^{XI} \varphi_{XI}^{\text{q}})$$ $$S^{(0)}\left[\varphi^{XI\mathfrak{a}}\right] = \int \mathrm{d}^4x \frac{\delta S^{(0)}\left[\varphi^{XI}\right]}{\delta \varphi^{YJ}(x)} \bigg|_{\varphi^{XI} = \varphi^{XIcl}} \varphi^{YJq}(x) + \mathcal{O}\left(\varphi^{q}\right)^{3}$$ Path integral over quantum components yields delta function $$\varphi^{I\prime}=\frac{\varpi^I}{H}+\xi^{QI}, \qquad \mathcal{D}_N\varpi_I=-3\varpi_I-\frac{V_I}{H}+\xi_I^{\tilde{P}} \qquad \text{truly for classical components}$$ Stratonovich to Ito $$\mathfrak{D}_N \varphi^I = \frac{\varpi^I}{H} + \xi^{QI}, \qquad \mathfrak{D}_N \varpi_I = -3\varpi_I - \frac{V_I}{H} + \xi_I^{\tilde{P}}.$$ #### Conclusion - Rigorous path-integral derivation of stochastic inflation using methods of nonequilibrium quantum field theory, solving conceptual issues of heuristic approach. - Resolution of inflationary stochastic anomalies: covariant ltô-Langevin equations in phase space, ready to be used. - Markovian approximation: covariant FP eq in phase space, and analytical formulae for noises. - Many phenomenological and theoretical applications: statistical properties of zeta in concrete models, study of phase space FP operator in multifield contexts ...