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Introduction

Modern view of cosmology

o Origin of large-scale structures from quantum vacuum fluctuations
e Small-scale initial perturbations stretched by accelerated expansion (Inflation)

o Classical inflation: slowly-rolling, self-interacting scalar field, almost
scale-invariant spectrum. Very successful paradigm

But inflation is not a complete theory

o Ignores initial singularity
o Trans-Planckian modes
o Fine-tuning of the potential, etc...

Bouncing models can resolve some inflation problems.
Need for: contracting phase+bounce mechanism+expanding phase
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could look like

Credits: https://www.aei.mpg.de/gravitation-and-cosmol
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Scalar Field Collapse

Collapse scenario depends on potential

o Non-stiff collapse: P < p with V > 0; (including scale-invariant collapse)
o Pre-Big Bang collapse: P = p with V = 0; (blue tilted)

o Ekpyrotic collapse: P > p with V < 0; (ultra-stiff fast-roll collapse)
Classical stability well-known (Heard & Wands, 2002).

Objective of this work

Study classical collapse scenarios with quantum fluctuations
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FLRW Collapse

Homogeneous and isotropic background

1 1 R
L=+-g ER = 58%8“@ —V(p)| and ds? = —dt? + a?(t)yjdx'dxd

Scalar field with energy density and pressure

1. 1,
p=59"+ V), P=2¢"-V(p), (1)

Constant equation of state w
P=wp. (2)
For simplicity: V() = Voe™**¢ = scaling solution with

ax [t/ where p= and A2 =3(1+w). (3)

Az
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Dynamical system

Reducing dynamics to a one-dimensional problem

Klein-Gordon equation + Friedmann constraint

dv 2 /1
p+3HG+—=0 ; HZ=C (WQ*V) ' (4)
de 2
Changing to dimensionless variables
KY rVEV
X = b = b
Ve VT 3H

The Friedmann constraint becomes

X+y?=1, (6)

Dynamical system (prime: N = In(a))
x' = —3x(1 — x2) + \/3/2y? , (7)
Y = xy(3x — \/3/2) . (8)
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1D Phase-space

V

I.LHeard and D.Wands [Arxiv:0206085v1]

Linear perturbations around xp

Stability analysis

. 2 _
Equation of state x = = =6 3 gl (x —xB) - (12)
2 2
b's
= % o (9) What if we add noise to x?
X y
Critical points
H>0 ¥
(Ax)xa, =F1, ya=0; (10)
B+
A A2
(B)XB:%, YB = 1_F' A AX
;
(11)
the solution (B) exists for +(6 — A2) > 0. B
H<0
o A2 < 6: flat positive potential Figure: Phase-space for flat positive
% . . potentials, A% < 6. Friedmann constraint
o \“ > 6: steep negative potential ) x2 +y2 = 1. Arrows indicate evolution in

cosmic time, t.
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1D Phase-space

In Summary

o Expanding universe (N — +00):

o Scaling solution stable for positive, flat potential A2 < 6 (including inflation,
A« 1).

¢ Scaling solution unstable for negative, steep potential A2 > 6.

o Contracting universe (N — —o0):

o Scaling solution stable for negative steep potential A? > 6 (including
ekpyrosis, A? > 6).
o Scaling solution unstable for positive flat potential A? < 6 (including matter

collapse, A% = 3).
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Field perturbations

First-order perturbations

metric

o Scalar field perturbations ¢ = ¢(t) + d¢(t,X) in a linearly-perturbed FLRW

ds? = —(1 + 2A)dt? + 2a8;Bdx'dt + a2(t) [(1 — 2¢)d;; + 205 E + hyj] dx'dxd |
with A, B, ¢ and E scalar potentials and hj; tensor perturbations.
(¥ =0)

o Wave equation for first-order scalar field perturbations (spatially-flat gauge
d3v

1d2z
halig | ——
dn2+( d )

=0,
z dn? v
with dt = adn, v = adp and z = ap/H.

(13)
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Field perturbations

Solutions at small (sub-Hubble) and large (super-Hubble) scales

e—ikt/a
~ — for k%2 /a2 > H? (sub-Hubble scales), 14
o / ( ) (14)
Co D¢ H2
dp~ — + — dt
(TR TR B
scales (14).

for k?/a? « H? (super-Hubble scales).

with quantum vacuum normalisation for under-damped oscillations on sub-Hubble

(15)
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Field perturbations

During accelerated expansion or collapse

o |aH| increases — modes starting on sub-Hubble scales (k? > a?H?) stretched
up to super-Hubble scales (k? < a?H?2).

e Quantum vacuum fluctuations k?/a? > H? at early times® — well-defined
predictions for the power spectrum of perturbations on super-Hubble scales.

—ikt
2which means §¢p ~ % for k2 /a? > H2.
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Field perturbations

D.Wands [Arxiv:0809.4556]
Evolution of the perturbed scalar field (v = adyp)
& + (k2 _

2-1
144&)v20
dn? n?

In power-law cosmology

3 1
aoc [t|P  where v=—-+4 ——.
2 p-—1

The growing mode solution of quantum fluctuations for a given k is

i 1 r(jy)2M
Spp = & / (Iv))
a

Ak [kn|l¥1-1/2
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Power-law collapse

o Power spectrum on super-Hubble scales as n — 0
Pso =

2 2
r(|v))2!”! (23) lkn[3=2¥1 .
T

(v —1/2)23/21(3/2)

o Power-law collapse = power-law spectrum

(19)

o Ang, = 0 for

=3-2v 20
o 7 (20)
o Slow-roll inflation (w = —1 and v = 3/2);
o Pressureless collapse (w = 0 and v = —3/2);
v
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Stochastic Formalism

Quantifying how quantum noises modify the long-wavelength (or coarse-grained)

field
Coarse-grained field and momentum (J.Grain and V.Vennin, JCAP 05(2017)045)

P = a_sftp +&p = *agv,ﬁ +&n (21)
Time-dependent cut-off scale (coarse-graining scale)
ko = caH . (22)
Noises (small-wavelength part) described by two-points correlation matrix = ,

3
L dio M)y gz () . (23)

Zrg = (0/€:£:]0) = 672 dN

Noise growth in a collapsing universe?
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Quantum noise

Perturbing EOS (note the relation éw = 4xgdx)

K : . P
bx=—— (6p—Ap— L5H) . 24
x \/éH(SO e ) (24)

Correlation matrix of the noise at critical point (B)

2
_ v|l—v
=x,x = g('/v A)(L_Q‘lul_g HQH% exp |:_

3—2v

At N)} , (25)

No noise for v > 0: adiabatic perturbations (includes power-law inflation
(v = 3/2) and ekpyrosis (v = 1/2)).
True at leading and next-to-leading order!

Kinetic-dominated solution (critical point A), A> =6 or v = 0

Always 0x = 0 at first order!
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Variance of Langevin equations

Formal solutions

Langevin equation at x = xp

o - ' N —6
X' =mX-—xp)+& with m= 5 (26)

Variance split into classical/quantum parts
2(N) = {(&(N) = xB)?) = 02 0(N) + 0% 4u(N)

N
= 02(N,)e2m(N-No) [ g5 e2m(N=8)=_ _(3) (27)
Ny

o For v # —3/2

3+ 2v
Uiqu(N) =h(v, A, 0)x?H?(N) {1 — exp |:V—71/2 (N, — N)} } (28)
o For v = —3/2 (scale-invariant /pressureless collapse)
3 H2Z(N)
2 —
Ux,QU(N) - ﬂ M]Q)] (N* - N) ) (29)
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Quantum Diffusion and Power Spectrum

o Quantum part of variance decays when

34+ 2v

Py >0. (30)

This is the case if either v > 1/2 or v < —3/2 (ignore first case: adiabatic!)
o Shift in spectral index:

12w 4(2V + 3)
ns — 1= =
1+ 3w 3

. (31)

For small positive deviation €, red spectrum when v = —3/2 — e.
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Spectral index
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Figure: Spectral index vs Bessel index. Dotted lines enclose 68% CL measurements by
Planck Collaboration.
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Maximum lifetime of the collapse phase at the fixed point

Backreaction condition

If U)%,qu =1 = does quantum noise change the dynamics?
o Pressureless collapse (v = —3/2)
134
H(N)| =~/ ——M,,; . 32
HOV] ~ 4 o Mo (32)

Drives away from fixed point below Planck scale if (N, — N) > 134.

o For slightly red spectrum (v = —3/2 — ¢, ns < 1): classical perturbations grow

faster
o Example from general solution: radiation-dominated collapse (v = —1/2)
13
[HN| & =My (3)

Cannot escape fixed point since o < 1.
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Hubble rate Evolution

My
Quantum
Gravity
Regime
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Summary

In summary

Inflation / Ekpyrotic collapse (v > 0) Pressureless collapse (v < 0)
0x = 0 (adiabatic perturbation) 0x # 0 (non-adiabatic perturbation)

o Inflation / Ekpyrotic collapse both classical and quantum stable.

o Pressureless collapse: quantum diffusion may change dynamics before Planck
scale for large number of e-folds.

o Classical perturbations dominate in almost scale-invariant collapse

What’s next?

o Connect these results to expanding phase (extend stochastic formalism to
non-monotonic time variable)

o Bounce from stochastic geometry?

o Gauge corrections in collapse?
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