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Introduction

Modern view of cosmology

Origin of large-scale structures from quantum vacuum fluctuations
Small-scale initial perturbations stretched by accelerated expansion (Inflation)
Classical inflation: slowly-rolling, self-interacting scalar field, almost
scale-invariant spectrum. Very successful paradigm

But inflation is not a complete theory

Ignores initial singularity
Trans-Planckian modes
Fine-tuning of the potential, etc...

Bouncing models can resolve some inflation problems.
Need for: contracting phase+bounce mechanism+expanding phase
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How a bouncing universe could look like

Credits: https://www.aei.mpg.de/gravitation-and-cosmology
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Scalar Field Collapse

Collapse scenario depends on potential

Non-stiff collapse: P < ρ with V > 0; (including scale-invariant collapse)
Pre-Big Bang collapse: P = ρ with V = 0; (blue tilted)
Ekpyrotic collapse: P � ρ with V < 0; (ultra-stiff fast-roll collapse)

Classical stability well-known (Heard & Wands, 2002).

Objective of this work

Study classical collapse scenarios with quantum fluctuations
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FLRW Collapse

Homogeneous and isotropic background

L =
√

−g
[

1
2κ2 R −

1
2
∂µϕ∂µϕ− V(ϕ)

]
and ds2 = −dt2 + a2(t)γijdxidxj

Scalar field with energy density and pressure

ρ =
1
2
ϕ̇2 + V(ϕ) , P =

1
2
ϕ̇2 − V(ϕ) , (1)

Constant equation of state w

P = wρ . (2)

For simplicity: V(ϕ) = V0e−κλϕ =⇒ scaling solution with

a ∝ |t|p where p =
2
λ2 and λ2 = 3(1 + w) . (3)
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Dynamical system

Reducing dynamics to a one-dimensional problem

Klein-Gordon equation + Friedmann constraint

ϕ̈+ 3Hϕ̇+
dV
dϕ

= 0 ; H2 =
κ2

3

(
1
2
ϕ̇2 + V

)
. (4)

Changing to dimensionless variables

x =
κϕ̇
√

6H
, y =

κ
√
±V

√
3H

, (5)

The Friedmann constraint becomes

x2 ± y2 = 1 , (6)

Dynamical system (prime: N = ln(a))

x′ = −3x(1 − x2)± λ
√

3/2y2 , (7)

y′ = xy(3x − λ
√

3/2) . (8)
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1D Phase-space I.Heard and D.Wands [Arxiv:0206085v1]

Stability analysis

Equation of state

w =
x2 ∓ y2

x2 ± y2 . (9)

Critical points

(A±) xA± = ±1 , yA = 0 ; (10)

(B) xB =
λ
√

6
, yB =

√
1 −

λ2

6
;

(11)

the solution (B) exists for ±(6 − λ2) > 0.

λ2 < 6: flat positive potential
λ2 > 6: steep negative potential

Linear perturbations around xB

x′ =
(λ2 − 6)

3
(x − xB) . (12)

What if we add noise to x?

Figure: Phase-space for flat positive
potentials, λ2 < 6. Friedmann constraint
x2 + y2 = 1. Arrows indicate evolution in
cosmic time, t.
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1D Phase-space

In Summary

Expanding universe (N → +∞):

� Scaling solution stable for positive, flat potential λ2 < 6 (including inflation,
λ2 � 1).

� Scaling solution unstable for negative, steep potential λ2 > 6.

Contracting universe (N → −∞):

� Scaling solution stable for negative steep potential λ2 > 6 (including
ekpyrosis, λ2 � 6).

� Scaling solution unstable for positive flat potential λ2 < 6 (including matter
collapse, λ2 = 3).
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Field perturbations

First-order perturbations

Scalar field perturbations ϕ = ϕ(t) + δϕ(t,~x) in a linearly-perturbed FLRW
metric

ds2 = −(1 + 2A)dt2 + 2a∂iBdxidt + a2(t) [(1 − 2ψ)δij + 2∂ijE + hij] dxidxj ,

with A, B, ψ and E scalar potentials and hij tensor perturbations.
Wave equation for first-order scalar field perturbations (spatially-flat gauge
(ψ = 0))

d2v
dη2 +

(
k2 −

1
z

d2z
dη2

)
v = 0 , (13)

with dt = adη, v = aδϕ and z = aϕ̇/H.
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Field perturbations

Solutions at small (sub-Hubble) and large (super-Hubble) scales

δϕ '
e−ikt/a

a
√

2k
for k2/a2 � H2 (sub-Hubble scales) , (14)

δϕ '
Cϕ̇
H

+
Dϕ̇
H

∫ H2

a3ϕ̇2 dt for k2/a2 � H2 (super-Hubble scales) . (15)

with quantum vacuum normalisation for under-damped oscillations on sub-Hubble
scales (14).
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Field perturbations

During accelerated expansion or collapse

|aH| increases → modes starting on sub-Hubble scales (k2 > a2H2) stretched
up to super-Hubble scales (k2 < a2H2).

Result

Quantum vacuum fluctuations k2/a2 � H2 at early timesa → well-defined
predictions for the power spectrum of perturbations on super-Hubble scales.

awhich means δϕ ' e−ikt/a
a
√

2k
for k2/a2 � H2.
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Field perturbations D.Wands [Arxiv:0809.4556]

Perturbations evolution

Evolution of the perturbed scalar field (v = aδϕ)

d2v
dη2 +

(
k2 −

ν2 − 1/4
η2

)
v = 0 . (16)

In power-law cosmology

a ∝ |t|p where ν =
3
2
+

1
p − 1

. (17)

The growing mode solution of quantum fluctuations for a given k is

δϕk =
i
a

√
1

4πk
Γ(|ν|)2|ν|

|kη||ν|−1/2 . (18)
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Power-law collapse

Predictions
Power spectrum on super-Hubble scales as η → 0

Pδϕ =

[
Γ(|ν|)2|ν|

(ν − 1/2)23/2Γ(3/2)

]2 (
H
2π

)2
|kη|3−2|ν| . (19)

Power-law collapse =⇒ power-law spectrum

∆nδϕ =
d lnPδϕ

d ln k
= 3 − 2|ν| . (20)

∆nδϕ = 0 for
Slow-roll inflation (w = −1 and ν = 3/2);
Pressureless collapse (w = 0 and ν = −3/2);
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Stochastic Formalism

Quantifying how quantum noises modify the long-wavelength (or coarse-grained)
field

Coarse-grained field and momentum (J.Grain and V.Vennin, JCAP 05(2017)045)

ϕ̇ = a−3πϕ + ξϕ , π̇ = −a3V,ϕ + ξπ . (21)

Time-dependent cut-off scale (coarse-graining scale)

kσ = σaH . (22)

Noises (small-wavelength part) described by two-points correlation matrix Ξf,g

Ξf,g = 〈0|ξfξg|0〉 =
1

6π2
dk3

σ(N)

dN
fk(N)g?k(N) . (23)

Noise growth in a collapsing universe?
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Quantum noise

Perturbing EOS (note the relation δw = 4xBδx)

δx =
κ

√
6H

(
˙δϕ− Aϕ̇−

ϕ̇

H
δH

)
. (24)

Correlation matrix of the noise at critical point (B)

Ξx,x = g(ν, λ)
(|ν| − ν)2

σ2|ν|−3 κ2H2
? exp

[
−

3 − 2ν
ν − 1/2

(N? − N)

]
. (25)

No noise for ν > 0: adiabatic perturbations (includes power-law inflation
(ν = 3/2) and ekpyrosis (ν = 1/2)).
True at leading and next-to-leading order!

Kinetic-dominated solution (critical point A), λ2 = 6 or ν = 0

Always δx = 0 at first order!

Emmanuel Frion 09 November 2020 15 / 21



Stochastic Collapse

Variance of Langevin equations

Formal solutions
Langevin equation at x = xB

x̄′ = m(x̄ − xB) + ξ̂x with m =
λ2 − 6

2
. (26)

Variance split into classical/quantum parts

σ2
x(N) =

〈
(x̄(N)− xB)2

〉
= σ2

x,cl(N) + σ2
x,qu(N)

= σ2
x(N?)e2m(N−N?) +

∫ N

N?

dS e2m(N−S)Ξx,x(S) (27)

For ν 6= −3/2

σ2
x,qu(N) = h(ν, λ, σ)κ2H2(N)

{
1 − exp

[
3 + 2ν
ν − 1/2

(N? − N)

]}
(28)

For ν = −3/2 (scale-invariant/pressureless collapse)

σ2
x,qu(N) =

3
27π

H2(N)

M2
pl

(N? − N) , (29)

Emmanuel Frion 09 November 2020 16 / 21



Stochastic Collapse

Quantum Diffusion and Power Spectrum

Quantum part of variance decays when

3 + 2ν
ν − 1/2

> 0 . (30)

This is the case if either ν > 1/2 or ν < −3/2 (ignore first case: adiabatic!)
Shift in spectral index:

ns − 1 =
12w

1 + 3w
=

4(2ν + 3)
3

. (31)

For small positive deviation ε, red spectrum when ν = −3/2 − ε.
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Spectral index
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Figure: Spectral index vs Bessel index. Dotted lines enclose 68% CL measurements by
Planck Collaboration.
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Maximum lifetime of the collapse phase at the fixed point

Backreaction condition

If σ2
x,qu = 1 =⇒ does quantum noise change the dynamics?
Pressureless collapse (ν = −3/2)

|H(N)| ≈

√
134

N? − N
Mpl . (32)

Drives away from fixed point below Planck scale if (N? − N) > 134.
For slightly red spectrum (ν = −3/2 − ε, ns < 1): classical perturbations grow
faster
Example from general solution: radiation-dominated collapse (ν = −1/2)

|H(N)| ≈
13
σ

Mpl . (33)

Cannot escape fixed point since σ < 1.
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Hubble rate Evolution

Quantum

Gravity
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Figure: Quantum diffusion dominates if starts from low energy scales.
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Summary

In summary

Inflation / Ekpyrotic collapse (ν > 0) Pressureless collapse (ν < 0)
δx = 0 (adiabatic perturbation) δx 6= 0 (non-adiabatic perturbation)

Inflation / Ekpyrotic collapse both classical and quantum stable.
Pressureless collapse: quantum diffusion may change dynamics before Planck
scale for large number of e-folds.
Classical perturbations dominate in almost scale-invariant collapse

What’s next?

Connect these results to expanding phase (extend stochastic formalism to
non-monotonic time variable)
Bounce from stochastic geometry?
Gauge corrections in collapse?
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