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Overview 



 When there is no noise in evolution of the system the field evolves classically: 

     

 

  
 However the presence of noises which originate from deep inside horizon, change 
the evolution of field: 

 

 

A Brief Review on Stochastic Inflation 



Ultra slow roll inflation (USR) 



In general the Klein-Gordon equation for inflaton is: 

 

 

 
By putting the potential equal to a constant  at the background 
level we have: 

  

 



The number of efolds to the end of inflation: (Namjoo, Firouzjahi 
& Sasaki 2012): 

 

 
 

In this model the power spectrum is given by: 

 

 

 

Also the non Gaussianity is given by 

 

 

 

USR Consequences 



Stochastic ultra slow roll inflation 



 

In ultra slow roll inflation we can not neglect  the second derivative of our test field. 
We should solve these set of equations together: 

 

 

 

 

 
Where  ξ(N) is the white noise. 

USR Langevin equations 



 W=ConstantArray[0,{10^4}]; 

 For[i=1,i<=10000,i++, 

     W[[i]]  =RandomVariate[NormalDistribution[]] 

 ] 

 white=Manipulate[ListPlot[{W[[1;;i]]}],{i,1,Length[W] 
,1,Appearance->"Open"},ContentSize->550] 

A code for mathematica to generate 
white noise 



Solving the Langevin equations  for the field and its conjugate momentum 
yields:  

 

 

 

 

 

And W(N) is the Wiener process: 

 

 

 

 

Solving the Langevin Eqautions 



Moments of W 

 

 

 

 

 

 

 

 



We rewrite our primary solution at the end of inflation  
as: 

 

 

 

 

 where  

 

 

 

Physical quantities 



Moments of number of e-folds 

By expanding in terms of к and using the recursive 
relations we get 

 



 
Using the Stochastic δN formalism one can show that: 

(V. Vennin, A. A. Starobinsky,Correlation Functions in Stochastic Inflation ,Eur. Phys. 
J. C (2015) 75: 413) 

(T. Fujita, M. Kawasaki, Y. Tada, T. Takesako,A new algorithm for calculating the 
curvature perturbations in stochastic inflation,JCAP 1312 (2013) 036) 

 

Power Spectrum and Non -
Gaussianity 



Let’s assume that the matter  Lagrangian is an arbitrary function of the kinetic term: 

(X. Chen, M. Huang, S. Kachru, G. Shiu,Observational Signatures and Non-
Gaussianities of General Single Field Inflation,JCAP 0701:002,2007) 

 

 

 

 

 

Generalization 



The Langevin equation 

Similar to stochastic ultraslow roll equation one can show that: 
(H. Firouzjahi, A. Nassiri-Rad, M. Noorbala,Stochastic non-attractor inflation, accepeted to publish in PRD) 



As a specific example we take our model as follows: 
(X. Chen, H. Firouzjahi, E. Komatsu, M. H. Namjoo, M. Sasaki,In-in and δN calculations of the 
bispectrum from non-attractor single-field inflation,DOI:10.1088/1475-7516/2013/12/039) 
 
 
 
 
 
 
 
 
 
 
The numeric calculations which will be seen later are done by using this specific example and 
setting cs^2=0.5 . 
 

 
 



Power Spectrum 



Boundary Crossing Probabilities 



In this case the initial velocity of the field is zero and the field 
evolves as follows: 

 

 

 

 

 

 

 

 

Standard Brownian motion 



  proc=ItoProcess[ x[t]==-0*x[t] t+ 
w[t],x[t],{x,1},t,w WienerProcess[]]; 

 A=RandomFunction[proc,{0.,1,0.001}]["PathCompone
nts"][[1,2,1]][[1]]; 

 B=RandomFunction[proc,{0.,1,0.001}]["PathCompone
nts"][[1,2,1]][[1]]; 

 RAN=Table[{A[[i]],B[[i]]},{i,1,Length[A]}]; 

 brownian=Manipulate[ListLinePlot[{RAN[[1;;i]]}],{i,1,L
ength[A] ,1,Appearance->"Open"},ContentSize->550] 

A code for Mathematica for random 
walk 



 

 

 

 

 

 

 

Standard Brownian motion  



Simulation of Standard Brownian 
motion 



 
For  large values of barriers we have: 

 

 

Brownian motion with non- zero drift 



Simulation of Standard Brownian 
motion with non zero drift 



Time dependent Diffusion with Drift 



In the limit that χ>>1 we have the following expressions 
for the probability: 

 

 



We can obtain the following  order of magnitude for the 
number of efolds to the end of inflation 

 



Simulation of probability and time 
average 



Let's assume the case that the diffusion is much larger than drift: 

(H. Firouzjahi, A. Nassiri-Rad, M. Noorbala,Stochastic non-attractor inflation, 
accepted to publish in PRD ) 

 

 

Large Diffusion Limit 



In the case that both of barriers can play the role of end of inflation, at leading order 
we have: 

(C. Pattison, V. Vennin, H. Assadullahi, D. Wands,Quantum diffusion during inflation 
and primordial black holes 

,DOI:10.1088/1475-7516/2017/10/046) 

(H. Firouzjahi, A. Nassiri-Rad, M. Noorbala,Stochastic non-attractor inflation, 
accepted to publish in PRD) 

 

Power Spectrum(Absorbing 
Condition ) 



Absorbing by image 



In the case that ϕ- plays the role of a reflecting barrier 
we have: 

Power Spectrum(Reflective 
Condition) 



Reflective by image 



  We have studied the quantum jumps to the power spectrum by 
the stochastic methods in non attractor inflationary  models. 
 

  The order of corrections is as small as the squared power 
spectrum and so negligible. 
 

  We studied the probability and expected time averages to hit 
the absorbing  barriers in these models. 
 

  We studied the power spectrum in case that the coefficient of 
diffusion is much larger that the drift coefficient. As we see in 
this case the power spectrum is proportional to the inverse of 
square of diffusion. 
 

Summary 



 


