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Part 1

FRAMEWORK
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Basic framework of Stochastic Inflation

Cosmic inflation is a phase of accelerated in the very early history of the universe.

Quantum fluctuations of the inflaton get stretched to cosmological scales and give rise to
metric and density perturbations which seed structure formation that are manifest in the
CMB temperature fluctuations.

We split the inflaton into a back- ground field, comprising of long wavelength modes, and
small perturbative corrections which are comprised of short wavelength modes that initially
start out inside the horizon and are later stretched out of causal contact during inflation.

φ(t, x) = φ̄(t) + φ̂(t, x)

where φ̄ refers to the classical, superhorizon inflaton field and φ̂ is the subhorizon, quantum
part of the field that has not become classical.

Quantum fluctuations backreact and modify the inflaton trajectory as stochastic noise. This
is precisely the physics that is captured by stochastic inflation. [Starobinsky (1986)]
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Inflaton evolution

The equation that describes the inflaton evolution:

d2φ

dN2
+ (3− ε1)

dφ

dN
+ (3− ε1)

∂φV

V
= 0

The inflaton evolution has been expressed in the e-fold time N with dN = Hdt.

H is the Hubble parameter defined by

H2 =
V (φ)

3− 1
2

(
dφ
dN

)2

The Hubble flow parameters are defined as follows:

ε1 = −
1

H

dH

dN
εn =

d ln εn−1

dN
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Mukhanov Sasaki

Now the evolution of the Fourier modes (Mukhanov-Sasaki Equation):

d2δφk

dN2
+ (3− ε1)

dδφk

dN
+

[(
k

aH

)2

+ (3− ε1)
∂φφV

V
− 2ε1(3− ε1 + ε2)

]
δφk = 0

This describes the evolution of the Fourier modes of the inflaton quantum fluctuations from
an initially subhorizon regime (k � aH) to a superhorizon regime (k � aH).

We considered k = 100a(Ni )H(Ni ) and k = 0.01a(Nf )H(Nf ).

Deep inside the horizon the quantum modes do not feel the curvature of spacetime and the
Bunch-Davies initial condition is imposed.

δφk =
1

a
√

2k

∣∣∣∣
N=Ni

dδφk

dN
= −

(
1

a
√

2k
+ i

k

aH

1

a
√

2k

) ∣∣∣∣
N=Ni

The quantum fluctuations of the inflaton can then be used to define the gauge-invariant
curvature perturbations.

ζk = Ψk +
δφk

dφ̄/dN

Here Ψk is a metric scalar perturbation.

Power spectrum of curvature perturbations are defined in this regime as follows

Pζ(k) =
k3

2π2
|ζk |2k�aH =

k3

2π2

∣∣∣∣ δφk√
2ε1

∣∣∣∣2
k�aH

A. De R. Mahbub Numerically modeling stochastic inflation 9 November 2020 5 / 29



Window function

The subhorizon fluctuations can be decomposed into a mode expansion.

δφ̂(N, x) =

∫
k>0

d3k

(2π)3/2
W

(
k

σaH

)
e−ik·x âkδφk (N) + h.c.

where “h.c.” stands for the Hermitian conjugate of the mode expansion.

W (k/σaH) is a suitably defined window function that picks out modes smaller than the
horizon. The nature of the stochastic process depends on the type of window function that
has been used.

The simplest and most commonly employed one is a sharp cut-off in momentum space

W

(
k

σaH

)
= Θ

(
k

σaH
− 1

)
This type of window function produces noise that is uncorrelated in time (white noise). This
is because in the definition of the noise terms the window function appears as a time
derivative

∂

∂N
W

(
k

σaH

)
=

k

σaH
(ε1 − 1)W ′

(
k

σaH

)
= k(ε1 − 1)δ(k − σaH)

A more physically motivated choice for a window function may be a Gaussian one. However,
this leads to colored noise which is correlated in time. This will be addressed in a future work.
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Stochastic Differential Equations (SDEs)

The SDEs in focus in our work is as follows where canonical momentum field π̄φ = dφ̄/dN.

dφ̄

dN
= π̄φ + ξφ

d π̄φ

dN
= −(3− ε1)

(
π̄φ +

∂φV

V

)
+ ξπ

The correlation functions simplify to terms proportional to Dirac δ-functions. It can be
shown that the correlation functions reduce to [Grain, Vennin (2017)]

Ξfg (x1 − x2;N1 − N2) =
k3
σ(N1)

2π2
(1− ε1(N))fkσ(N1)g

∗
kσ(N1)

sin [kσ(N1)|x2 − x1|]
kσ(N1)|x2 − x1|

δ(N1 − N2)

= (1− ε1(N))Pfg (kσ)
sin [kσ(N1)|x2 − x1|]

kσ(N1)|x2 − x1|
δ(N1 − N2)

where Pfg is the dimensionless power spectrum of the form fg∗ evaluated at kσ .

In slow-roll approximation, the mode functions (in the superhorizon regime) are given by

δφk =
H
√

2k3

(
k

aH

) 3
2
−ν

δπk =
H
√

2k3

(
ν −

3

2

)(
k

aH

) 3
2
−ν

where ν2 =
9

4
−

m2

H2
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At equal spatial points,

Ξφφ =
k3
σ

2π2

H2

2k3
σ

(
kσ

aH

) 3
2
−ν

=
H2

4π2
σ3−2ν

Ξππ =
k3
σ

2π2

H2

2k3
σ

(
ν −

3

2

)2 ( kσ

aH

) 3
2
−ν

=
H2

4π2

(
ν −

3

2

)2

σ3−2ν

〈ξf (x1,N1)ξg (x2,N2)〉 = Ξfg (x1 − x2;N1) δ(N1 − N2)

In the massless de Sitter limit, Ξφφ ' H2/4π2 and Ξπφ ' 0. This is a usable approximation
but not perfect.

In the spatially flat gauge, the curvature perturbations are defined as

ζk =
δφk√

2ε1

where δφk are the Fourier modes of the inflaton fluctuations.

The definition of Pζ comes from the two-point function of ζ(x)

〈ζ(x)2〉 =

∫
dk

k
Pζ(k)⇒ Pζ(k) =

d〈ζ2〉
d ln k

=
d

d ln k

(
〈δφ2

k 〉
2ε1

)
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Figure: An illustration showing the variation of the coarse-grained inflaton field during two different
realizations. We have not given any units because this figure is only for illustrative purposes. The fluctuations
have been amplified to make them more visible.

If the SDEs are solved enough times, the 〈δφ2〉 can be interpreted as a stochastic average over all
the realizations

〈δφ2
stochastic〉 =

1

nsimulations

nsim∑
i=1

(φ̄− φbg)2
i
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Stochastic calculus on a discrete lattice

The two-point function is calculated as follows.

〈f (x)f (x ′)〉 =

∑
all random events

f (x)f (x ′)

number of random events

A white noise random function is defined as :
〈f (x)f (x ′)〉 = M(x)δ(x − x ′) and 〈f (x)〉 = 0. with M(x) as the normalization factor and all
higher-order cumulants are required to vanish. We will fix M(x) = 1 here.

〈f (xi )f (xi′ )〉 =
δii′

∆x

The δii′/∆x becomes a Dirac δ-function in the limit ∆x → 0.

We use a random number generator for a large number of instances (e.g. 106) to overcome
the statistical noise.

These are some of the properties one can deduce: [De, Plumberg, Kapusta (2020)]

〈f (xi )f
′(xi′ )〉 =

δi+1,i′ − δi,i′
∆x2

〈f ′(xi )f ′(xi′ )〉 = −
δi,i′+1 + δi,i′−1 − 2δi,i′

∆x3〈∫ x1

xi

f (x ′)dx ′
∫ x2

xi

f (x ′)dx ′

〉
= min(x1, x2)− xi
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Algorithm

Algorithm: Coarse-grained inflaton evolution algorithm

Solve background evolution;
Set ∆N, a, H, ε1 and ε2;
Set σ = 0.01;
for N ∈ [Ninitial,Nfinal] do

kN = σaNHN ;
Solve Mukhanov-Sasaki Equation for each kN ,N;
return δφkN , δπkN ;

end
Calculate Ξφφ,Ξππ for each N
for j ∈ {1, 2, 3, · · · , nsim} do

Generate random normal event N (0, 1) for each N-step.
Multiply the random event with the amplitude.
for each N-step do

Solve SDE.
end

end
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Jackknife error estimation

One of the common ways to reduce bias and estimate errors in stochastic modeling is the
jackknife method.

It estimates the error of statistics without making any assumptions about the distribution
that generated the data.

We create jackknife samples by sequentially deleting a single observation from the sample, or
in other words, creating “leave-one-out” data sets. In our case, we consider the two-point
correlation statistic S .

We leave out the ith event to create the ith jackknife statistic Si . The average of the
jackknife samples is Savg =

∑
i Si/n. The jackknife error is then estimated as

σjack =

√
n − 1

n

∑
i

(Si − Savg)2

The error plots are provided in the paper.

A. De R. Mahbub Numerically modeling stochastic inflation 9 November 2020 12 / 29



Part 2

RESULTS FROM TEST POTENTIALS
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Chaotic Potential

We start with the quadratic potential.

V (φ) =
1

2
m2φ2

We choose N = 64 for the fiducial run and set the observable scale at N? = 10 producing a
total of ∆N = 54 e-folds of observable inflation. Using the pivot scale set at N? where
k? = Mpc−1, the parameter m2 is set to 4.42× 10−11M2

pl. Here we use the fact that Pζ ,

under the slow-roll approximation at CMB scales, is given by [Planck (2018)]

Pζ(k?) =
H2(k?)

8π2ε1(k?)
' 2.2× 10−9

We check how the two correlation functions Ξφφ and Ξππ evolve with time in the next slide.
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Noise Amplitude

Figure: Evolution of correlation functions Ξφφ and Ξππ for σ = 0.01.

Ξφφ is the dominant contributor to the stochastic noise and Ξππ is suppressed by a few orders of
magnitude.
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Power Spectrum

We can compute the curvature power spectrum Pζ for a large number of realizations and
compare with the result obtained by solving the Mukhanov-Sasaki equation.

Figure: Power spectrum of curvature perturbations for the chaotic potential using σ = 0.01. The blue and
green dotted curves represent results for 106 and 107 realizations respectively while the solid red curve is the
solution obtained from solving the Mukhanov-Sasaki equation.
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An Identity to reduce ‘noisiness’

d ln k

dN
=

da/dN

a
+

dH/dN

H
= 1− ε1

Hence

Pζ(N) =
1

1− ε1

d

dN

(
〈δφ2

st〉
2ε1

)
=

1

1− ε1

1

2ε1

(
d

dN
〈δφ2

st〉 − ε2〈δφ2
st〉
)

We can use the following identity to reduce the randomness of the noise.(Derivation is given
in the paper). The time evolution of any n-point correlation function is derived using
Fokker-Planck equation. [Ezquiaga, Garcia-Bellido (2018)]

d

dN
〈δφ2

st〉 = Ξφφ + 2〈δφstδπst〉

The power spectrum can be expressed in the form

Pζ =
1

1− ε1

1

2ε1

(
Ξφφ + 2〈δφstδπst〉 − ε2〈δφ2

st〉
)
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Noisy derivative of stochastic terms

Figure: Comparison of 〈δφ2
st〉 and its derivative. They are in units of M2

pl. We see that while the former
appears smooth, the latter is not.
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Power Spectrum for chaotic potential

Figure: Comparison of Pζ with I with the original expression and II with using the identity. The orange curve
passes through the points and has no noisy features.

A. De R. Mahbub Numerically modeling stochastic inflation 9 November 2020 19 / 29



Deformed Starobinsky potential

USR inflation models typically possess some peculiar features in their potentials that create
departures from slow-roll behaviour. The presence of an inflection point in the potential can
slow down the inflaton and give rise to amplifications in the curvature power spectrum.

We consider the following potential: [Ketov, Khlopov (2018)]

V (φ) = V0

(
1 + ξ − e−αφ − ξe−βφ

2
)2

In the limit ξ → 0, the potential reduces to the R + R2 modification of Einstein gravity,
which gives rise to Starobinsky inflation. There are three free parameters in this potential
since V0 is fixed by the CMB normalization of the power spectrum. We impose the condition
that there is an inflection point of V (φ) at φ̃.

ξ = −
α

2βφ̃
e−αφ̃+βφ̃2

β =
βφ̃+ 1

2φ̃2

We chose the following parameter set: V0 = 1.27× 10−9M4
pl, α =

√
2/3, β = 1.114905 and

ξ = −0.480964. For the numerical simulations, we set φin = 5.82Mpl which produces
approximately N = 70 e-folds of inflation. Like the chaotic potential case, we fix the
observable scale at N? = 10 where we start adding the noise terms to the SDEs.
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Deformed Starobinsky potential

Figure: The deformed Starobinsky potential for super-Planckian field excursions. The shaded regions show the
different periods in the inflationary stage.
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Comparison of Noise Amplitude

Figure: Evolution of the correlation functions Ξφφ,Ξππ and Ξs
φπ for σ = 0.01. It is clear that the π − π

noise becomes significant in the USR phase.
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During the early stages of the inflation, much like slow-roll, the Ξππ term is subdominant.
Once the inflation enters the USR phase, Ξππ becomes comparable to Ξφφ and can no
longer be ignored. As a result, one should expect significant difference between the behavior
of background fields and noise-incorporated fields.

We already know that curvature power spectrum is enhanced near an inflection point. We
can see this semi-quantitatively in the following way: near an inflection point
∂φV ' ∂φφV = 0 and the inflaton evolution simplifies to

d2φ

dN2
+ (3− ε1)

dφ

dN
' 0

the solution of which can be expressed as

φ(N) ∼
∫ N

e−
∫ N′ (3−ε1)dN′′dN′

Then the curvature power spectrum behaves in the following way near the inflection point

P1/2
ζ =

H2

2πφ̇
=

H

2πdφ/dN
∼

H

2π

[∫
e−

∫
(3−ε1)dN′′dN′

]−1

As long as ε1 < 3, there is an exponential amplification of the curvature power spectrum
near the vicinity of the inflection point. If we disregard ε1 for a moment and consider that
the USR phase lasts for δN e-folds, the power spectrum scales as Pζ ∼ e6δN . Now we can
compare the standard result of Pζ computed by solving the Mukhanov-Sasaki equation with
that of the stochastic procedure. [Dimopoulos (2017)]
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Power spectrum for Deformed Starobinsky

There is an O(1) enhancement in Pζ relative to the Mukhanov-Sasaki result. The peak occurs at

∆Npeak = 35.9 which, in terms of the comoving wavenumber, is around kpeak ∼ 8.63× 1013Mpc−1.
Concerning PBH formation, comoving scales of this size would collapse to form PBHs of mass close to

6.6× 1017g . The peak in the curvature power spectrum is approximately Ppeak
ζ ' 10−4. Although this is not

nearly large enough to collapse to produce PBHs in sufficient abundances, it indicates that there are parameter
sets which can work in favor of PBH formation. Due to the added amplification in the power spectrum, less
finely tuned parameter sets can be used to explain PBH formation.

Figure: Power spectrum of curvature perturbations for the deformed Starobinsky potential using σ = 0.01.
The blue and green dotted curves represent results using Eq. (17) for 106 and 107 realizations respectively
while the solid red curve is the solution obtained from solving the Mukhanov-Sasaki equation.
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Discussions and Comparison with Slow-roll noise

Although the parameters in both potentials have been chosen such that Pζ ∼ 2.2× 10−9 at
the pivot scale k? = 0.05Mpc−1, the stochastic results predict slighly larger values. In our
computations, we chose N? = 10 into the fiducial run as corresponding to k?. The results
obtained in these computations were

Chaotic: Pζ(k?) = 2.61× 10−9

Deformed Starobinsky: Pζ(k?) = 2.95× 10−9

These values are larger than the observable obtained from CMB measurements. However, we
see that these discrepancies are not present when the slow-roll expressions for the noise
terms are used. As stated in a previous section, under the slow-roll approximation the noise
terms take the following forms

〈ξφ(N1)ξφ(N2)〉 '
H2

4π2
δ(N1 − N2)

〈ξπ(N1)ξπ(N2)〉 ' 0
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Comparisons

Figure: Power spectrum of curvature perturbations computed using slow-roll noise from the chaotic (left
panel) and deformed Starobinsky potentials (right panel) respectively. The power spectrum has been computed

for 106 realizations of the stochastic process using σ = 0.01. The bottom panel contains both slow-roll and
exact noise, along with the data obtained from.
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Numerical solution to Mukhanov Sasaki

Even for complete slow-roll, the Ξφφ noise does not exactly correspond to H2/4π2. In following
figure, we plot the exact numerical calculation of the noise along with H2/4π2. Therefore, at
each time step in the SDEs, the amount of noise being added is slightly different than H2/4π2,
which is then reflected in the calculation of Pζ .

Figure: Comparison of the exact φ− φ noise (solid black) with the slow-roll approximation (dotted black).
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Role of σ

A different choice of σ does not produce any changes for the quadratic potential, as can be
expected. But not for the deformed starobinsky potential. We carry out computations for the
same parameter set with N = 70 for σ = 5× 10−3. Coincidentally, for this value of σ, the kσ
would correspond to the smallest wavenumber for which the evolution can be numerically
computed since, for anything smaller, there would not be enough background evolution
information. We plot the Pζ in Fig. 11 for σ = 10−2, 7.5× 10−3 and 5× 10−3 for 106 realizations
of the SDEs. We observe that, although the shape of Pζ stays similar, there is an increase in the
size of the peak, the largest of which is of the order Pmax

ζ ∼ 5× 10−4 for σ = 5× 10−3.

Figure: Power spectrum of curvature perturbations for the deformed Starobinsky potential using
σ = 1.0× 10−2 (blue), σ = 7.5× 10−3 (green) and σ = 5.0× 10−3 (magenta). The bottom panel is a
magnified version of the peaks in the top panel. There is a relative increase in the size of the peak going from
the first to last.
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Summary of the talk

We numerically modeled stochastic inflationary dynamics under the influence of Gaussian
white noise without any slow-roll simplifications.

We studied two potentials: the quadratic potential and the deformed Starobinsky potential.

Deformed Starobinsky potential has an inflection point and the inflationary dynamics around
such an inflection point is of interest to PBH formation.

In the case of the deformed Starobinsky potential there is an amplification of the curvature
power spectrum Pζ for modes that cross the horizon near the plateau region due to the
interplay between the Ξφφ and Ξππ noise terms.

We conclude that the exact form of the stochastic noise terms have implications for the
stochastic dynamics and subsequent computation of the curvature power spectrum. A
slow-roll approximation of Ξφφ ' H2/4π2 does not exactly match numerical results even for
completely slow-roll inflation models like φ2.

The stochastic calculations should potentially help in alleviating some of the difficulties
associated with this extreme fine-tuning issue plaguing USR inflation models.

We also note that there were small changes in the height of the peak for the deformed
Starobinsky potential for different values of the coarse-graining scale.

Future work:

Colored Noise.

Investigation of PBH formation.

We thank Prof. Joseph Kapusta (University of Minnesota, Twin-Cities) for his guidance during
this project.

Thank You for listening!
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