

HA-TPC PROTOTYPE TESTS

Sergey Suvorov

30.10.2020 Réunion upgrade-T2K

INTRODUCTION

- Different HA-TPC prototypes were tested:
 - 1. MM1 DLC1

MM: 75 µm glue, 197 kOhm < R < 265 kOhm Electronics: old FEE tested with beam and cosmic in DESY

- 2. MM1 DLC2 (clone of 1) Electronics: FEE V1 tested with cosmic in Saclay
- 3. ERAM #2

MM: 200 µm glue, 165 kOhm < R < 220 kOhm Electronics: FEE V1 tested with cosmic in Saclay

4. ERAM #3

MM: 200 µm glue, 150 kOhm < R < 203 kOhm Electronics: FEM V2 tested with cosmic in Saclay

 Q_2, t_2

 Q_1, t_1

 Q_3, t_3

TIME MEASUREMENTS

• The maximum of the waveform is used to measure charge and time.

Waveform example:

00 120 140 160 180 200 220 240 260

Anomaly in the time distributions were found

Amplitude

Reference points:	
▶ $t_2 - t_1 < 0$	wrong reco (3%)
▶ $t_2 - t_1 = 0$	track over pad border
▶ $t_3 - t_1 \le 0$	should never happen

Track

• Peak at $t_3 - t_1 = 0$ is clearly unphysical

TIME MEASUREMENTS

t₃ ≈ t₁ ->3rd pad WF is treated wrongly -> wrong charge measurement

-> wrong position

Is DESY and ERAM spatial resolution better because of the better treatment of the WF?

Cluster:

FRACTION OF "BAD" PADS

Fraction of 3rd pads with $t_3 - t_1 < 2$

Text

5

SPATIAL RESOLUTION

- Correlation between bulk at $t_3 t_1$ and the spatial resolution was found
- Clear sequence:

DESY beam -> DESY cosmic -> ERAM3 -> ERAM2 -> MM1

Saclay and DESY cosmic samples have different angular and momentum acceptance

	SR
DESY beam	180 um
DESY cosmic	420 um
ERAM3	427 um
ERAM2	502 um
MM1	714 um

EVENT DISPLAY EXAMPLE

ERAM2 380 V sample

- Vertical track
- Leading pad (central column) measured at $t \approx 170$
- 2nd pad (left column)
 cares ~1/3 of charge
 with small time delay
- 3rd pad (right column) top and bottom row are fine central row: $t_3 = t_1$ spiky waveform

ERAM2 360 V

No pattern recognition/selection is used for the Event Display

ERAM2 360 V

EVENT DISPLAY EXAMPLE

ERAM2 380V

ERAM2 380V

CHARGE COLLECTION

- > A tension between charge measurements was observed
 - > DESY beam (4 GeV electrons) provide 50% more charge comparing to DESY cosmic
 - But Saclay MM1 and ERAM provide ~twice less charge then DESY cosmic
 - All samples were taken at 360V at DLC and 200 ns peaking

dE/dx resolution

GAS QUALITY

- > The dEdx vs time in the leading pad is used to estimate gas quality
 - The "slope" -> attenuation in gas
 - The length in time -> drift velocity

- No anomalies were found
 - MM1 tends to have more severe attenuation and smaller drift velocity
 - But not dramatical

SPATIAL RESOLUTION

Angular selection: $|tg\phi| < 0.3$, $|tg\theta| < 0.3$ was used

Iteration 0 -> Centre of Charge method

Saclay and DESY cosmic samples have different angular and momentum acceptance

380 V

SPATIL RESOLUTION

- Removing "suspicious" pads from the spatial resolution analysis doesn't improve result
 - ▶ $t_2 t_1 > 0$
 - $t_i t_1 > 5$ for i > 2

- "Avoiding" pads is not solving the problem
- The essential information is contained in "suspicious" WF and probably "masked"

MM1 360 V

CONCLUSION

- > The wrong time measurement for the 3rd pad was observed
 - The most accurate one is in DESY beam data, the worst in MM1 cosmic
 - Wrong time measurement indicates also wrong charge measurement
 - Wrong charge measurement bias the position measurement
- Coincidence in time between leading pad and 3rd pad may be the indication of the cross-talk in the electronics
 - > The array of the capacitors may be read in the wrong way
- The dependence of the spatial resolution over detectors can be caused by the wrong treatment of the WF
- The accuracy of the charge measurement is not affected by the observed phenomena
- The tension between the charge measurements in DESY and in Saclay is not understood

"NORMAL" WF

What is the origin of the 1st peak in 3rd pad? 900E 3rd pads below and above didn't see it 140 120 100 60 40 if it's a charge sharing pad above/below 500E should see ᇟ 900F 50H 800F 700E 500È 140 160 180 200 220 24 160 180 200 220 240 260 120 140 160 180) 200 220 240 260 foo 240 260 35 30 25 15 10È 00 120 140 160 180 200 220 240 ⁽²⁾ 180 200 220 0LL 100 140 160 180 200 220

PAD TIME STAMP

• $t_2 - t_1$ vs $t_3 - t_1$ demonstrates interesting pattern

- Bulk at $t_3 t_1 = 0$ is very clean in MM 1 data
- "Diagonal" pattern come from wrong time measurements
 -> originated by same reason?

WF WIDTH

Other interesting metric is WF width and FWHM

MM1 380 V

DESY beam 360 V

- > 3rd pad was cutoff at 20bins width??!!
- In MM data most of the 3rd pads has small width

WAVEFORM WIDTH

MM1

CHARGE IN THIRD PAD

- Charge in the pads with $t_3 t_1 < 5$ seems not to be affected by DLC voltage
- While most of them has small charge close to threshold the tail towards higher charge exists

TIME DIFFERENCE

- > Hypothesis: time confusion may come from the inclined tracks
 - $t_3 t_1$ versus the angle w.r.t. MM plane was studied (θ)
 - No dependence was observed

MM1

TIME DIFFERENCE VS CHARGE FRACTION

TIME DIFFERENCE VS CHARGE 360V

-20

 t_3-t_1

TIME DIFFERENCE VS CHARGE 380V

3RD PAD QUALITY VS LEADING PAD CHARGE

"Good" and "bad" pads vs. The charge in the leading pad

TIME DIFFERENCE VS WF FWHM

TIME DIFFERENCE VS WF WIDTH 360 V

MM1

TIME DIFFERENCE VS WF WIDTH 380 V

DT VS TOTAL CHARGE

DESY COSMIC 360 V

WF width

GEOMETRY POSITION

35

SPATIAL RESOLUTION. PAD RESPONSE FUNCTION

Avalanche position can be reconstructed with ``centre of charge'' method

$$x_{track} = \frac{\sum \left(x_{pad} \cdot Q_{pad} \right)}{\sum Q_{pad}}$$

- We expect a better precision from "Pad Response Function (PRF)": $Q_{pad}/Q_{cluster} = PRF(x_{track} - x_{pad})$
- With known PRF the track position in a cluster is reconstructed with:

$$\chi^{2} = \sum_{pads} \frac{Q_{pad}/Q_{cluster} - PRF\left(x_{track} - x_{pad}\right)}{\sigma}$$

The PRF is fit with analytical function:

$$PRF(x, \Gamma, \Delta, a, b) = \frac{1 + a_2 x^2 + a_4 x^4}{1 + b_2 x^2 + b_4 x^4}$$

MM1 VS ERAM2

- From Samira's <u>slides</u>:
 - MM1 at 380V provides more charge and higher multiplicity than ERAM2 at 360V
 - MM1 at 380 has worse spatial resolution then ERAM2 at 360V

Residuals:

Tension?

MM1 VS ERAM2

PRF is not dramatically better for ERAM2

Both scattered plot and analytical function don't look different