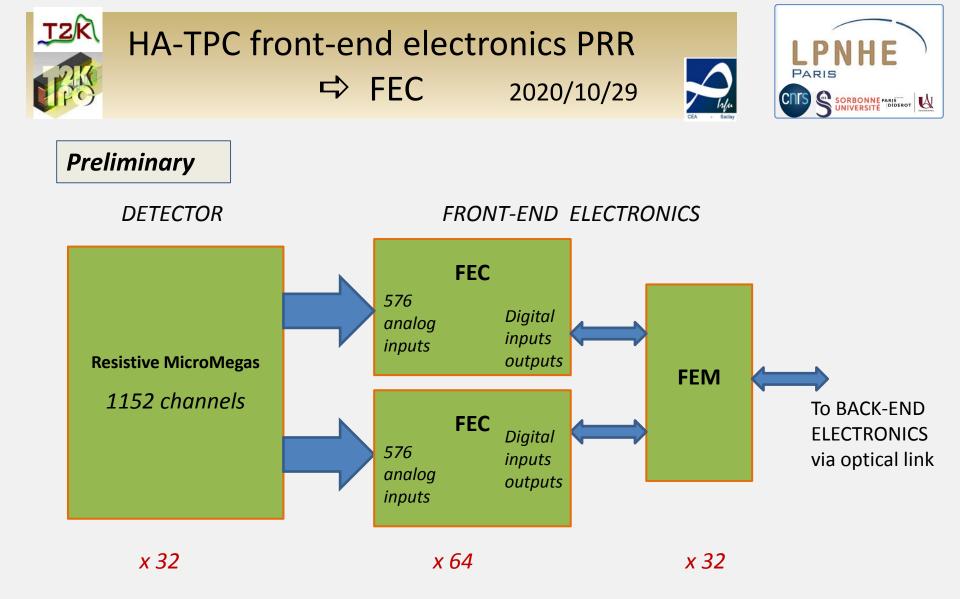
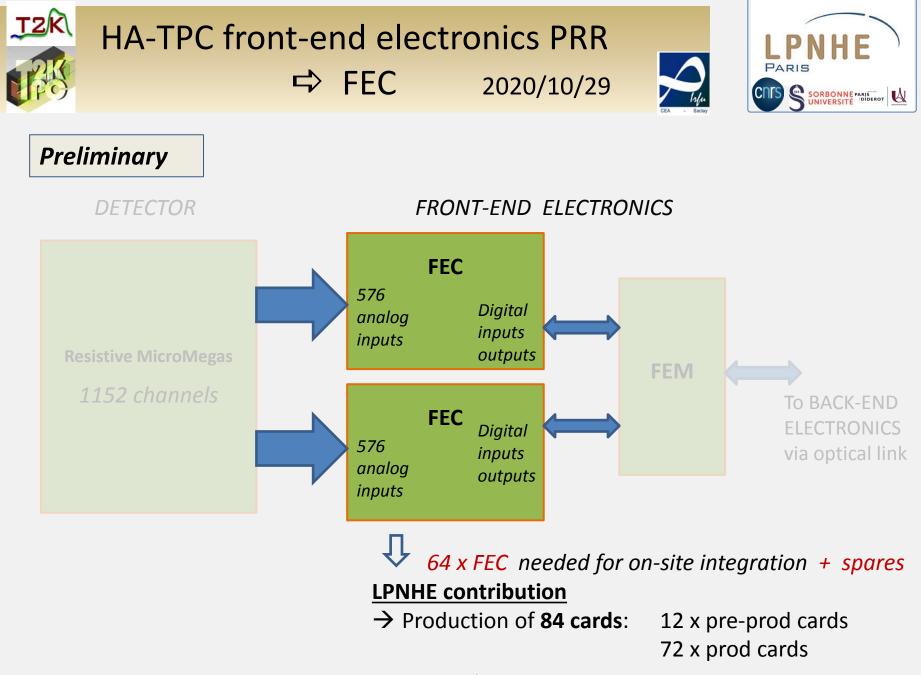


Front End Card - FEC / T2K Phase2

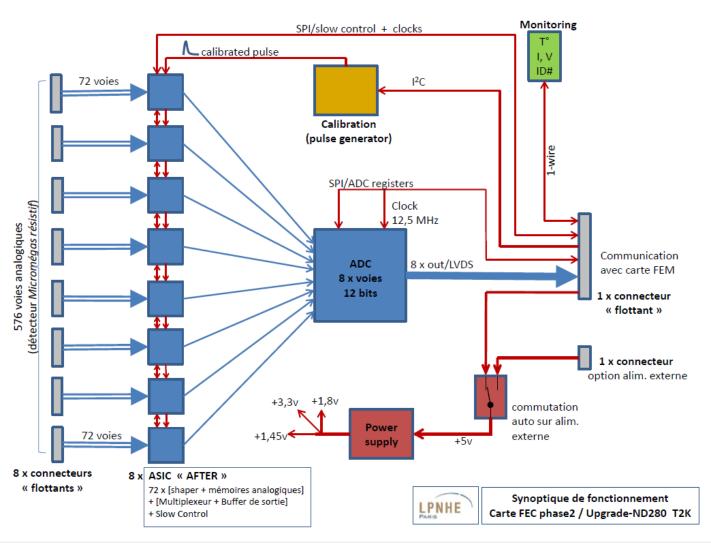


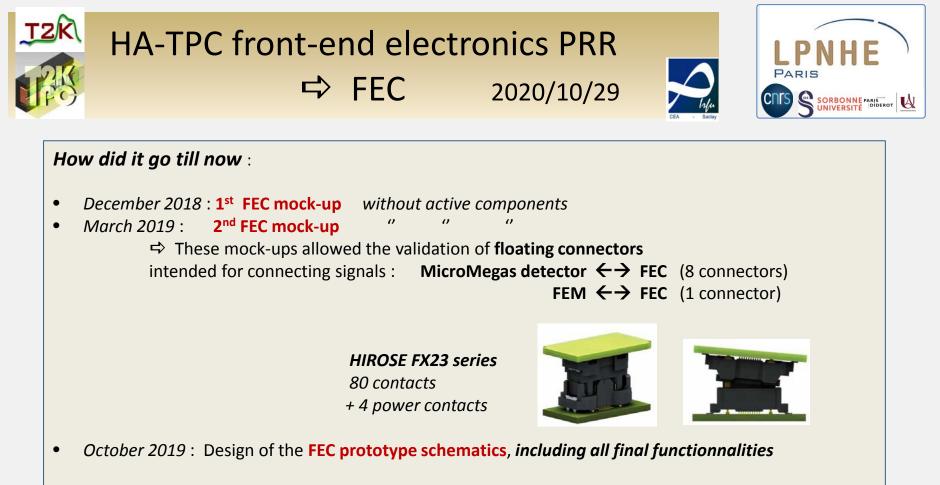

LPNHE electronics staff : Eric Pierre François Toussenel Jean-Marc Parraud

LPNHE scientist Manager :

Boris Popov

Acknowledgements to Denis Calvet and all the IRFU T2K team members for their collaboration


FEC / Phase2 :


Based on FEC/Phase1 that works fine for more than 10 years at T2K-Tokai site.

Use of the same ASIC (→ « After » / IRFU) for the read out and processing of analog signals coming from the detector. Qty=8 (qty=4 in Phase1)

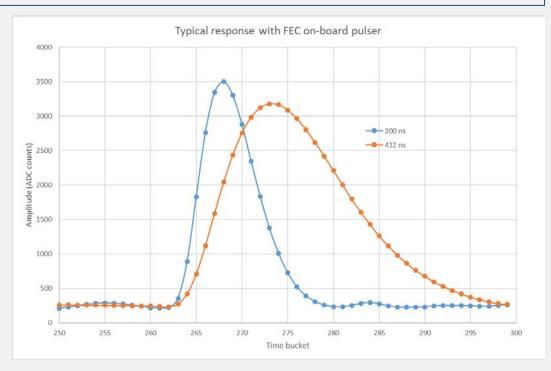
Use of an **8 channel ADC** (**AD9637-40**), instead of a 4 channel ADC.

The **global architecture remains the same** as it was in Phase1.

- February 2020 : FEC prototype manufacturing
 February to June 2020 : Tests at IRFU with FEM prototype and acquisition system
 worked fine after few fixes (2 wrong footprints, 1 missing connection on eFuse)

 August 2020 : 12 x pre-prod FEC manufacturing, few changes versus prototype mentioned above
 - September 2020 : 4 x tested at IRFU with pre-prod FEM and acquisition system
 2 x tested at Warsaw with their new testbench

work fine / now waiting for production, qty = 72



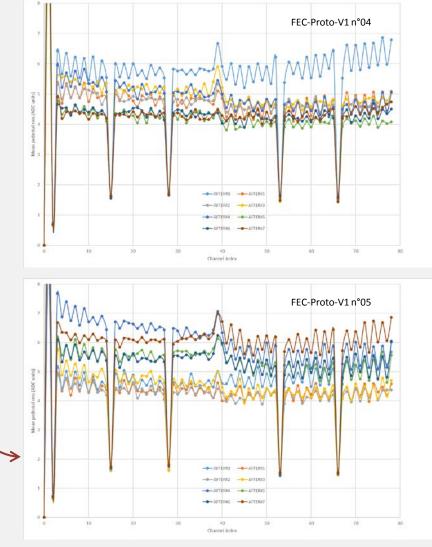
Tests made on FEC prototypes at IRFU

 \rightarrow Thanks to Denis Calvet !

 \rightarrow Power consumption measurement : \approx 1,5 A / board

- → Calibration pulse response measurements
- 2 pulse widths injected : > 200 ns > 412 ns

FEC-Proto-V1 n°05


Tests made on FEC prototypes at IRFU

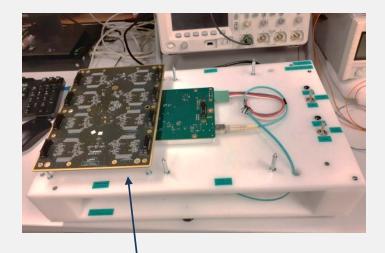
→ Pedestals measurement

> without shielding> inputs not connected

! AFTER ASIC channels # 0, 1, 2, 15, 28, 53, 66 are NOT data channels

(see document "ASIC After datasheet", P. Baron and E. Delagnes).

Test Bench intended for FEC production


This testbench has been developed by our colleagues of Warsaw University of Technology, and *delivered to LPNHE one week ago.*

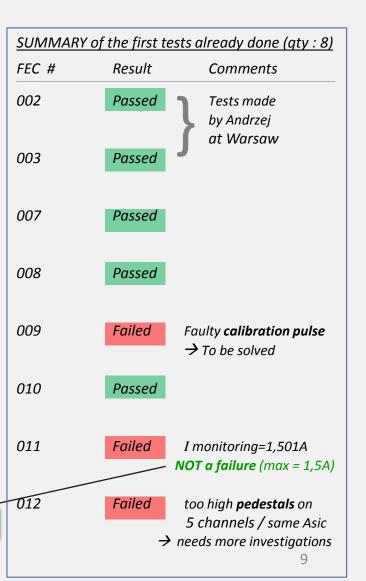
→ Many thanks to our Warsaw colleagues for their good job.

This testbench, including *hardware* and *software*, has been **successfully turned on at LPNHE**.

A few FEC tests have been performed.

>> In order to test the forthcoming FEC, this testbench will be installed at the manufacturer site (*Ouestronic-Rennes*).

FEC in test


Test Bench intended for FEC production

« Passed » example FEC 007 test report / page #1

Dat	te: 2020-10-26	16:01:30			
Tes	ster name: Dieg	jo			
Test	#1 Monitoring value	s	Passe	d	
0	FEC label	- 007			OK
1	FEC DC2438 ID		e30000024da8fa26		
2	FEC_T (to 35°C)		29.469		
3	FEC_Vdd (3.2V to 3.4V)		3.290		
4	FEC_I (1.1A to 1.5A)		1.396		
5	FEC_Vad (1.9V to 2.0V)		1.950		
Test	#2 Slow control reg	isters:	Passe	d	
Test	#3 Pedestal run:		Passe	d	
8	After chip #8	Mean OK		STDDEV OK	ОК
9	After chip #9	Mean OK		STDDEV OK	ок
10	After chip #10	Mean OK	Mean OK		ок
11	After chip #11	Mean OK	Mean OK		ок
12	After chip #12	Mean OK	Mean OK		ок
13	After chip #13	Mean OK	Mean OK		ок
14	After chip #14	Mean OK	Mean OK		OK
15	After chip #15	Mean OK		STDDEV OK	ок
Test	#4 AD9637 test pat	tems	Passe	d	
0	ADC channel #0	P#1 (Midscale short 2048)		MAX 2048 MIN 2048	OK
1	ADC channel #1	P#2 (+Full-scale short 4095)	P#2 (+Full-scale short 4095)		ок
2	ADC channel #2	P#4 (Checkerboard 1365 to	P#4 (Checkerboard 1365 to 2730 toggle)		ОК
3	ADC channel #3	P#7 (One/zero-word toggle)	P#7 (One/zero-word toggle)		OK
4	ADC channel #4	P#1 (Midscale short 2048)	P#1 (Midscale short 2048)		ок
5	ADC channel #5	P#2 (+Full-scale short 4095)	P#2 (+Full-scale short 4095)		OK
6	ADC channel #6	P#4 (Checkerboard 1365 to	2730 toggle)	MAX 2730 MIN 1365	ОК
7	ADC channel #7	P#7 (One/zero-word toggle)		MAX 4095 MIN 0	ок
Test	#5 Pulser run		Passe	d	
8	After chip #8	DAC: 483 G(120) ADC(2850	to 3200)	ADC AMPL: 3044	ок
9	After chip #9	DAC: 483 G(120) ADC(2850	DAC: 483 G(120) ADC(2850 to 3200)		ОК
10	After chip #10	DAC: 483 G(120) ADC(2850	DAC: 483 G(120) ADC(2850 to 3200)		ОК
11	After chip #11	DAC: 483 G(120) ADC(2850	to 3200)	ADC AMPL: 2966	ок
12	After chip #12	DAC: 483 G(120) ADC(2850	to 3200)	ADC AMPL: 3078	ок
13	After chip #13	DAC: 483 G(120) ADC(2850	to 3200)	ADC AMPL: 3029	ок
14	After chip #14	DAC: 483 G(120) ADC(2850		ADC AMPL: 3045	ок
15	After chip #15	DAC: 483 G(120) ADC(2850	to 3200)	ADC AMPL: 3025	OK

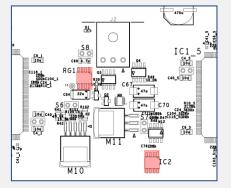
« Failed » example FEC 009 test report / page #1

Test#		0			
	1 Monitoring values		Failed		OH
0	FEC label		009		
1	FEC DC2438 ID		6c0000024dc35c26		
2	FEC_T (to 35°C)		25.156		0
3	FEC_Vdd (3.2V to 3.4	1	3.270		
4	FEC_I (1.1A to 1.5A)		1.401		OF
5	FEC_Vad (1.9V to 2.0	JV) 1.3	330		FA
Teett	D Claur control regio	teres	Deece	4	
	2 Slow control regis	ders.	Passe		
	3 Pedestal run:		Passe		
0	After chip #0	Mean OK		STDDEV OK	0
1	After chip #1	Mean OK		STDDEV OK	0
2	After chip #2			STDDEV OK	OF
3		ter chip #3 Mean OK		STDDEV OK	OF
4	After chip #4	Mean OK		STDDEV OK	01
5	After chip #5	Mean OK		STDDEV OK	0
6	After chip #6	Mean OK		STDDEV OK	0
7	After chip #7	Mean OK		STDDEV OK	O
Test#	4 AD9637 test patte	ems	Passe	d	
0	ADC channel #0	P#1 (Midscale short 2048)	P#1 (Midscale short 2048)		OH
1	ADC channel #1		P#2 (+Full-scale short 4095)		OF
2	ADC channel #2	P#4 (Checkerboard 1385 to 2730 toggle)		MAX 2730 MIN 1365	OF
3	ADC channel #3	P#7 (One/zero-word toggle)		MAX 4095 MIN 0 MAX 2048 MIN 2048	OF
4	ADC channel #4		P#1 (Midscale short 2048)		Oł
5	ADC channel #5		P#2 (+Full-scale short 4095)		OF
6	ADC channel #8	P#4 (Checkerboard 1365 to 2730 toggle			OF
7	ADC channel #7 P#7 (One/zero-word toggle)			MAX 4095 MIN 0	OF
Test#	5 Pulser run		Failed		
0	After chip #0	DAC: 483 G(120) ADC(285	0 to 3200)	ADC AMPL: 69	FA
1	After chip #1	DAC: 483 G(120) ADC(285	0 to 3200)	ADC AMPL: 64	FA
2	After chip #2	DAC: 483 G(120) ADC(285	0 to 3200)	ADC AMPL: 72	FA
3	After chip #3	DAC: 483 G(120) ADC(285		ADC AMPL: 63	FA
4	After chip #4	DAC: 483 G(120) ADC(285	0 to 3200)	ADC AMPL: 74	FA
5	After chip #5	DAC: 483 G(120) ADC(285	0 to 3200)	ADC AMPL: 68	FA
6	After chip #8	DAC: 483 G(120) ADC(285		ADC AMPL: 71	FA
-	After chip #7	DAC: 483 G(120) ADC(285	0 to 3200)	ADC AMPL: 70	FA

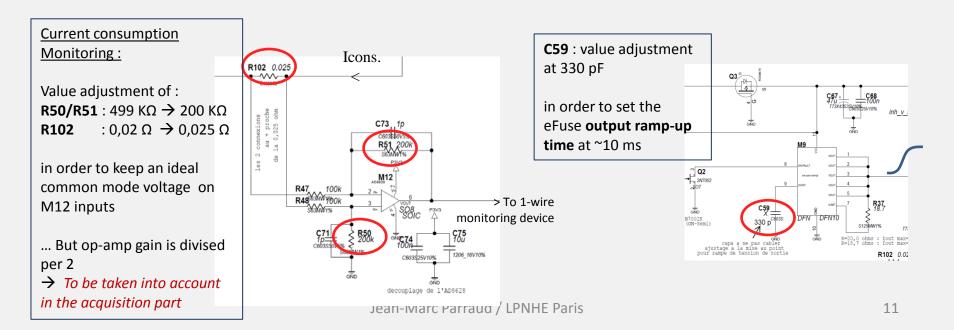
Jean-Marc Parraud / LPNHE Paris

Shielding/cooling plate

Thanks to the IRFU mechanical team ! >> Zones à refroidir PLAN CABLAGE ELEMENTS FEC PROTO V1 ↓ ¢ FEC cooling : In order to keep a temperature of 25~30°C, cooling is required. **Components requiring** cooling are : - Regulator MIC29502 *P≈2,5W* - Regulator LM1086 P≈0,7W - ADC AD9637 *P≈0,5W* - Asic AFTER (x8) Ð P≈0,5W each Silicone pads



Improvements made on FEC


Following the prototype tests :

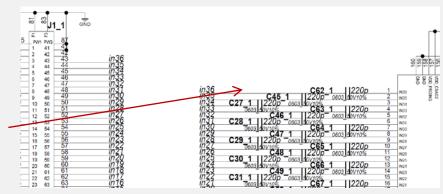
> Change of improper **footprints** \rightarrow IC2 / DS2438 (1-wire monitoring device) RG1 / LP2951 (linear regulator / +1,45v)

> Connection GND \leftarrow \rightarrow Pad M9 / STEF05 (eFuse) that was missing !

Following the pre-prod FEC tests :

Topics to keep an eye on

Tests in magnetic field :


Because of *Covid-19 pandemic*, beam tests could not take place in October 2020 (DESY) as planned. Thus, pre-prod FEC could not have been tested in a 0,2 T magnetic field.

- → There is an alternative to do this magnetic test at *IJCLab-Orsay*. Date to be determined. (? Covid ?)
- We are rather confident to the issue : *FEC/Phase1* was insensitive to this environment.
 FEC/Phase2 : no magnetic component, only 1 inductor-22 nH for the ADC/1,8v filtering. This inductor is not mandatory and has been placed *as a precaution.* >> It can safely be *replaced by a 0 Ω* resistor if necessary.

Analog inputs are not voltage-referenced :

Input pads towards AFTER Asic are not referenced, and may *eventually* be charged at a potential greater than the one accepted by the Asic input.

- → Existing leakage currents on PCB must eliminate this possibility
- ightarrow No damage has never been observed till now
- >> In series capacitors may be replaced by 1 kv ones
- >> As a last resort, a 100 MΩ to GND can be added at each input pad (qty=576 !)

Planned schedule : (before Covid-19 containment annoucement)

FEC Boards

- November 2020 : Launch of FEC prod (qty=72) to external company (Ouestronic)
- End of February 2021: 1st batch of 16 FEC tested and delivered
 ⇒ These 16 boards are intended to equip the first ½ HA-TPC planned for March 2021
- April 2021 : Last batch of 56 FEC tested and delivered

FEC Cooling plates

- November 2020 : 8 plates manufactured at LPNHE workshop
- December 2020 : 8 plates manufactured by external company (Chanteloup Associés)

⇒ These 16 cooling plates are intended to equip the first ½ HA-TPC planned for March 2021

• April 2021 : 64 plates manufactured by external company (Chanteloup Associés)

Risks of delay on the schedule :

• **COVID-19!** Delay on our work at LPNHE in case of sanitary containment

Delay on FEC production \rightarrow \bigcirc **Ouestronic** was open during previous containment, ... maybe the same for next one

Delay on cooling plates production. *No information about Chanteloup Associés in that case*