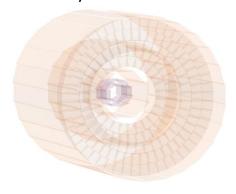
VXD Upgrade information

Tristan Fillinger

26/10/2020

Upgrade Belle II France

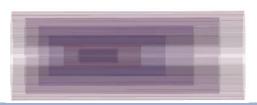


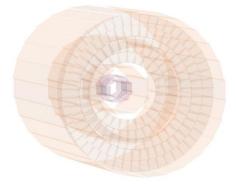
New geometries implemented

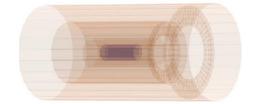
- VTX software upgrade working group: T. Fillinger, T. Lueck, B. Schwenker, C. Wessel
 - Integrate a new CMOS vertex detector (VTX) into the Belle II software framework
 - Re-use / extend as much of the common software infrastructure as possible
 - Upgrade software developed on separate branch in main repository, no interference with master for Belle II (But the upgrade branch is synced with main branch every few weeks)
- Confluence page: https://confluence.desy.de/display/BI/Full+simulation+effort
- **Upgrade branch**: https://stash.desy.de/projects/B2/repos/software/browse?at=refs%2Fheads%2Fupgrade
- 3 new "VTX" (Vertex) geometries proposed, implemented and connected to existing tracking: CMOS 5 layers + forward discs **CMOS 7 layers CMOS 5 layers**

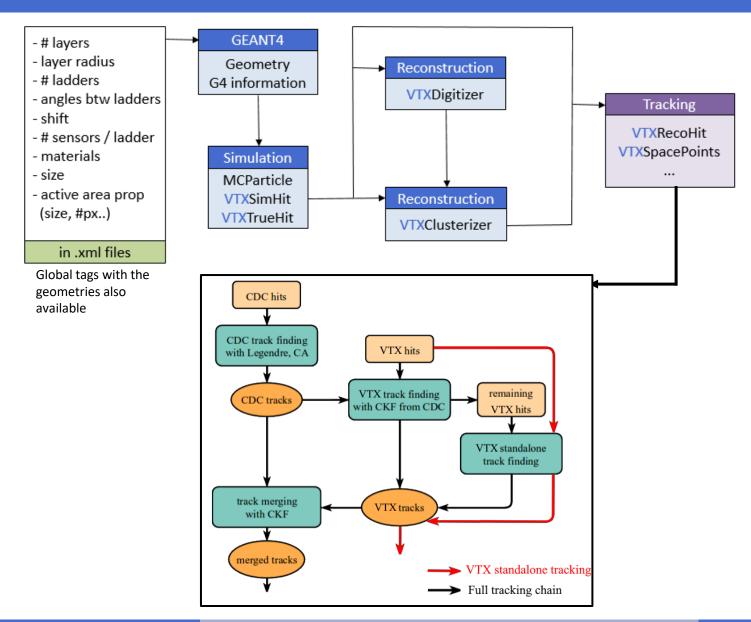


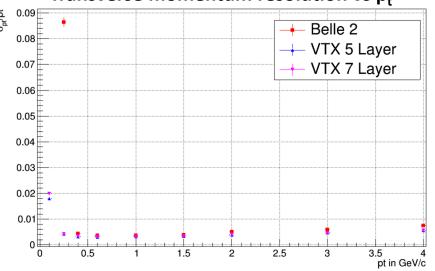
New geometries implemented

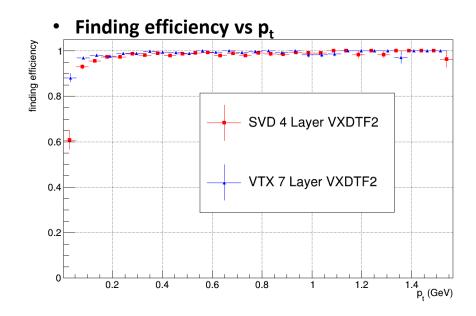

- Requirements for the sensors:
 - Reconstruct the primary vertex:
 - Radius: first layer at 1.4 cm
 - Material budget: 0.1% / 0.3%
 - Pitches: 33x33 μm
 - Power dissipation < 200 mW/cm²


- Acceptance
 - Radius: last layer at 14 cm
 - Length: from 12 cm to 72 cm
- Cope with the high beam-induced background
 - Integration times < 100 ns
- 3 new "VTX" (Vertex) geometries proposed, implemented and connected to existing tracking: CMOS 5 layers + forward discs CMOS 5 layers **CMOS 7 layers**

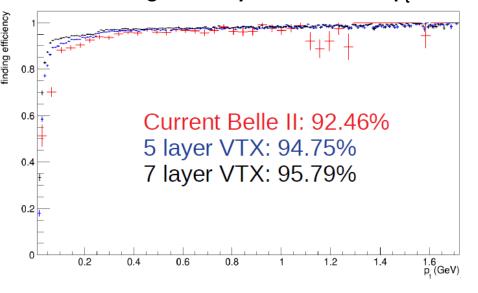


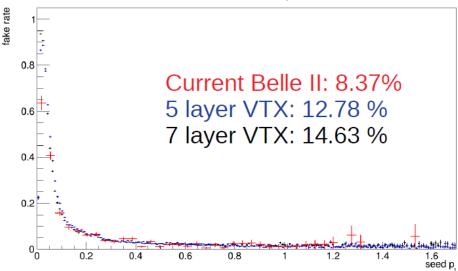





VTX package

Standalone performance




- Better standalone tracking performances than current VXD.
- VTX best resolution at low p_t.
- Similar high finding efficiencies.

Full tracking performance

Finding efficiency as a function of p,

Fake rate as a function of p_t

- Better full tracking performances than current VXD.
- Slightly higher fake rate.
- Results are promising and the tools are here to study the impact of the different characteristics of the sensors and the geometries.

Use VTX for benchmarks: Remarks

Everything still work in progress:

- Currently no fixed releases (but can be easily done) nor install via cvmfs, you
 need a full local installation and the upgrade branch (and we will not merge to
 master anytime soon).
- No way to run on the grid if no release, only via bsub on KEKCC.
- No common place from where to provide produced samples or bkg files (everything is in our personal directories under KEKCC).
- The background sample produced so far are small, targeting to run with tracking validation scripts. For analysis sample we need more bkg files produced at KEKCC
- The VTX (+ CDC) reconstructed tracks are written into the mdst dataobjects.
 No one ever tried yet to run an example analysis with this. (Benjamin will do some test in the coming week).
- For sure all payloads for MVA based analysis tools will be missing.

Use VTX for benchmarks: How to

Use the upgrade branch

https://stash.desy.de/projects/B2/repos/software/browse?at=refs%2Fheads%2Fupgrade

Environment variables that should be set from command line before running the script:

```
export BELLE2_VTX_UPGRADE_GT= upgrade_2020-09-22_vtx_5layer upgrade_2020-09-22_vtx_7layer upgrade_2020-06-24_vtx_5layer_discs

export BELLE2_VTX_BACKGROUND_DIR=

/group/belle2/users/benjamin/overlay_vtx_5layer/upgrade_2020-09-22_vtx_5layer/phase3/BGx1/set0 /group/belle2/users/benjamin/overlay_vtx_7layer/upgrade_2020-09-22_vtx_7layer/phase3/BGx1/set0 5layer+discs: In production
```

In your simulation files, add at the beginning:

```
from vtx import get_upgrade_globaltag, get_upgrade_background_files
b2.conditions.disable_globaltag_replay()
b2.conditions.prepend_globaltag(get_upgrade_globaltag())
```

Later:

```
add_simulation(main, bkgfiles=get_upgrade_background_files(), useVTX=True)
add reconstruction(main, useVTX=True)
```

- That's it!
- Example from validation: Full Tracking chain: fullTrackingValidationVTXBkg.py
 Standalone tracking: vtxTrackingValidation.py

Conclusion

- Three geometries are implemented in BASF2 and fully connected to tracking
- Validation results are promising
- As we re-use as much of the common software infrastructure as possible
 - → Easy to adapt scripts to use VTX
- Everything still work in progress
- All the information here:

https://confluence.desy.de/display/BI/Full+simulation+effort

Thank you for your attention

Tristan Fillinger

26/10/2020

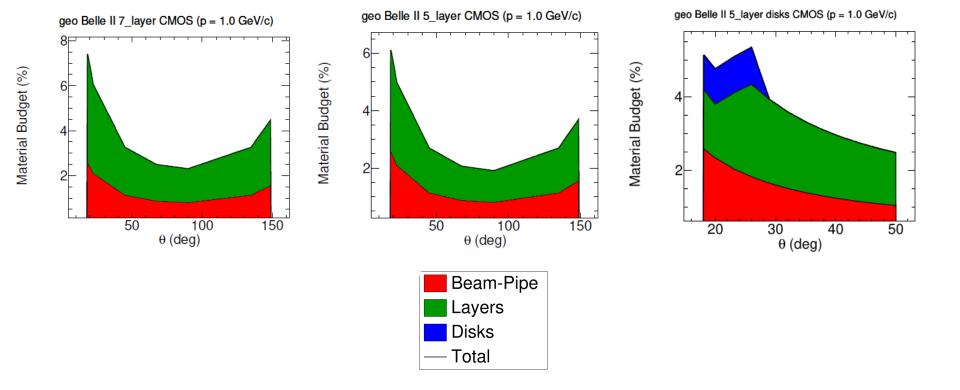
Upgrade Belle II France

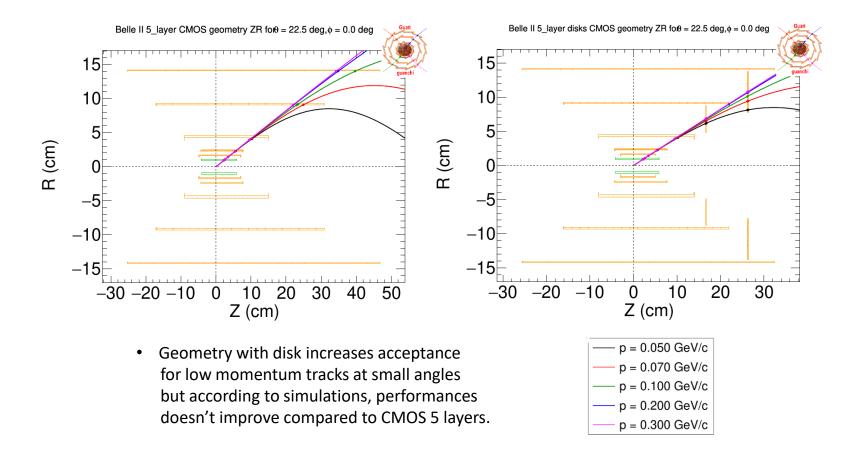
Backup

Tristan Fillinger

26/10/2020

Upgrade Belle II France

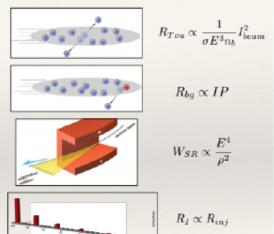




Material budget of the VTX

Material budget of the VTX

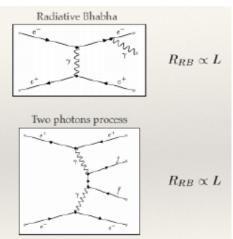
Background production


Machine background

Touschek scattering: single Coulomb scattering event between two particles of the same bunch, that are lost.

Beam-gas scattering: Coulomb elastic scattering or bremsstrahlung with residual gas atoms.

Synchrotron Radiation (SR): photon emission from beam particles when subject to acceleration.

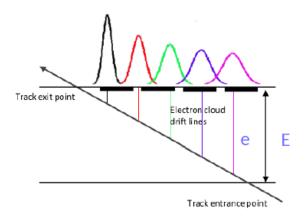

Injection background: injected bunch performing betatron oscillation around the stored bunch, resulting in particle losses especially in the interaction region.

Luminosity background

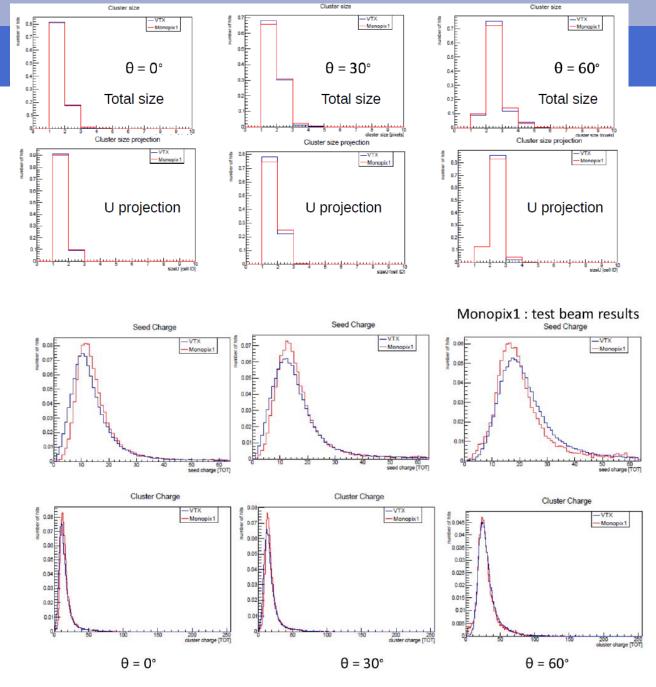
Radiative Bhabha: neutron production from emitted photons (shields used for mitigation); off-energy primary particles lost in final focus magnets.

Two photons process: low momentum electron-positron pairs that can generate multiple hit in the VerteX Detector.

- New geometry requires new production of Bkg files
- Production of simulated background hit for overlay on KEK cluster
 - Not many files needed for checking validation plots.
- Adaption of scripts checked with Bkg librarian
 - For nominal Belle II BG (x Scale)
 - Detailed Belle II MagneticField
 - Current accelerator simulation (SAD files, 17th campaign)
 - Generator for rad. Bhabha and Two photon process
 - Simulated hits passed to VTX digitizer


Digitizer

Improved VTX Digitizer


Based on digitizer for DEPFET pixels in the Belle II software. Refactored code for charge collection and digitization. Blue parameters adjustable.

- Check if the particle hit is inside the integration time window T_{int}
- Split the path of the particle in the VTX active thickness E into segments and drift the charges from the center of each segments.
 - The transverse diffusion (coefficient D) follows a gaussian with a width defined as: sigmaDiffus = sqrt (D * e/2)
- Integrate charges per pixel and add the noise to the charge
- Subtract hit threshold

- Check if Charge > 0
- Amplify and digitize charge Charge = Charge/ ElectronToToT
- Clipping of ToT codes Charge = charge % MaxToT
- Store the digit

Digitizer

