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Introduction

@ Micromegas for a DHCAL:
o fast, radiation hard, good ageing properties, robust, large area,
high gas gain, spark proof, standard gas mixture (Ar, iC4H19, CO3)
@ small avalanche charge — sensitive front-end electronics

Charged particle
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| |... Woven mesh ‘°"i5°*i°:k 3 mm gas
£ | ONERIMESN AN

© mm PCB

Front-end ASIC 2 mm epoxy

o R&D activities at LAPP:

o fabrication and test of thin detector of large area (up to 1 m?)
@ simulation, DAQ (DIF), mechanics (SiD), electronics (DIRAC)
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Experimental setup

@ Chamber geometry

o Anode PCB with 1 cm? anode pads
@ Bulk MICROMEGAS: 128 um gap mesh laminated on PCB
@ Plastic frame and steal cover define a 3 mm drift gap

lcm

6 cm

16 cm

@ Readout electronics

@ GASSIPLEX chip: 16 channels with preamplifier and shaper
@ 4 boards with 6 chip each, multiplexed ouput
@ Digitization by 10 bit ADCs connected to a PC

@ Ar/iCqH1g 95/5: high gains (20-10%) at moderate voltages (< 450 V)
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Experimental setup

@ CERN/PS beam (T10 zone): e*, %, p* up to 10 GeV
@ Chambers

o 3 6x16 cm? chambers with GASSIPLEX readout (G1-G3)
o 1 12x32 cm? chamber with GASSIPLEX readout (Gg)

Absorbers

G1 G2 G3 s2

Cerenkov

S4 85
83

$1 H1 H2 H3
G4

o Trigger
o 3 8x32 cm? scintillators for chamber area scans (S;-S3)
o 2 crossed 2x4 cm? sc. for shower profile studies (S4,Ss)
@ Cerenkov counter to tag 2 GeV electrons/positrons
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Energy measurement principle

@ The number of ADC counts N measured on a given channel relates to

the energy deposited in the gas ¢ above the corresponding pad:

9.GS
w
@ Summing over each hit (t = 3 fC), the energy deposit is:

W N;
gzzi:q:%zi: G:Si

@ Using values averaged over all channels:

N =

€

W1 «—GSd, W1
=4G5> a as qecszi:a

i
@ However, G; and d; are not known
— deduce a; from the signal distribution on each pad
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Channel inter-calibration

@ Measure signal distribution on each pad:
@ Move chamber across the beam, trigger from large scintillators
@ Insure that all charge is collected on one pad — event with single hit
o Collect between 200 and 500 events per pad
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@ Inter-calibration:
@ Adjust Landau function on measured distribution — MPV m;
o Coefficient a; given by m;/m
@ Correction applied as: N
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Pressure temperature corrections

@ Pressure and temperature variations impact on the gas gain.
@ Writing V the mesh voltage and (A,B) two parameters:

6(V) = oo 27 exp( -5

@ The gain relative sensitivity to P, T variations can be predicted:

ABPg? BP,
Cpyr = (Ag - TVg ) exp (—T\}g>
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o The correction is applied as: N — N - (1- Cp,7 A(P/T))
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Energy and Hit distribution of electron showers

@ Check that the high voltage in each chamber is OK
@ Insure that a track has traversed the small chambers:

@ request at least one hit in two of the three chambers
@ request aligned hits (centered at the beam profile maximum =+ 1 pad)

@ Apply inter-calibration and P, T correction

o o o o

0.035 0,035} 09} 0.4}

0.03 2A. 0.03 4A. 0.25 2A. 0.25 4A.
0.025 0.025} o o)

0.02 0.07] 0 0

0.015] o015 x )

o001} 001} o o
0.008] 0.003] 0.09 0.05)

@000 4000 6000 8000 10000 =560 4000 6000 5000 10000 T 16 I R T
energy (eV) energy (eV) number of hits number of hits

o o o o
0,035 0,035} 09 0.3}

003 6A. 009 8A. 029 6A. 029 8A.
0.025 0,025} o) 0]

0.07 0.02)
0.015 0.015} 019 019

00: 001 o o
0.005] 0.005) 009 0.05)

©~2060 4000 6000 5000 10000 %2000 4000 6000 8000 10000 74 6 6 10 12 14 16 T4 6 8 10 12 14 16
energy (eV) energy (eV) number of hits number of hits

M. Chefdeville (LAPP, Annecy) Beam test of a small MICROMEGAS DHCAL September 16, 2009 9 /16



@ Plot distribution mean versus number of absorber n
@ Adjust 3 parameters on the trend:

@ Profile maximum at n = p1/p2
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@ Small effect of the threshold:
o Maximum of fy;; reached at a slightly larger depth
@ Most secondaries traverse one pad at the beginning of the shower
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Longitudinal profile of electron showers
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Energy and Hit distribution of hadrons

@ Check that the high voltage in each chamber is OK
@ Insure that a track has traversed the small chambers:

@ request at least one hit in two of the three chambers
@ request aligned hits (centered at the beam profile maximum =+ 1 pad)

@ Apply inter-calibration and P, T correction
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Longitudinal profile of hadron showers

@ Plot distribution mean versus number of absorber n
o Adjust 3 parameters on the trend:

f(n) = pon™ exp(—p2n)
o Profile maximum at n = p1/p>
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@ Comparison with electron showers:
o Flatter profile, maximum reached at similar depth
o Small saturation effect
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Energy and hit distribution of electrons

@ Insure that a track has traversed the small chambers:
@ request at least one hit in two of the three chambers
@ request aligned hits (centered at the beam profile maximum)
@ Calculate the distance between hit pad i and shower axis
@ use coordinates (xg,yo) of beam profile maximum in large chamber

n==2v(x0—x)2+ (Yo — y)?

’
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@ Small effect of the threshold:
o Energy distribution slightly more peaked with a smaller RMS
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Energy and hit distribution of hadrons

@ Insure that a track has traversed the small chambers:
@ request at least one hit in two of the three chambers
@ request aligned hits (centered at the beam profile maximum)
@ Calculate the distance between hit pad i and shower axis
@ use coordinates (xg,yo) of beam profile maximum in large chamber

n==2v(x0—x)2+ (Yo — y)?
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@ Small effect of the threshold:
o Energy distribution slightly more peaked with a smaller RMS
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Transverse profile of electrons and hadrons

@ Difference between energy and hit profile
o Hit distribution is flatter at the beginning of the shower
@ Can be seen as a larger RMS
o Applies for electron and hadron showers
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Conclusion

@ Micromegas behaviour in 2 GeV electron and hadron showers
@ Stable and high gain during test period (a few HV trips over 12 days)
@ P, T variations can be corrected for, or HV adjusted accordingly
@ Electron and hadron shower profile
@ Longitudinal profile of electrons shows more variations
@ Transverse profile is similar
@ Energy and number of hit distributions

@ Show a similar trend with the number of absorber

o Longitudinal distribution maximum shifts deeper at larger threshold

@ Larger transverse distribution RMS for hits at the beginning of the
shower
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