Beam test of a small MICROMEGAS DHCAL prototype

M. Chefdeville

LAPP, Annecy

September 16, 2009

Outline

Experimental setup

- Chamber geometry and readout electronics
- Beam test setup

Energy measurement

- Energy measurement principle
- Channel inter-calibration
- Pressure temperature corrections

Profile of 2 GeV electron and hadron showers

- Energy and Hit longitudinal distribution
- Transverse distribution

Conclusion

Introduction

- Micromegas for a DHCAL:
 - fast, radiation hard, good ageing properties, robust, large area, high gas gain, spark proof, standard gas mixture (Ar, iC₄H₁₀, CO₂)
 - $\bullet\,$ small avalanche charge $\rightarrow\,$ sensitive front-end electronics

- R&D activities at LAPP:
 - fabrication and test of thin detector of large area (up to 1 m²)
 - simulation, DAQ (DIF), mechanics (SiD), electronics (DIRAC)

Experimental setup

• Chamber geometry

- Anode PCB with 1 cm² anode pads
- Bulk MICROMEGAS: 128 μ m gap mesh laminated on PCB
- Plastic frame and steal cover define a 3 mm drift gap

Readout electronics

- GASSIPLEX chip: 16 channels with preamplifier and shaper
- 4 boards with 6 chip each, multiplexed ouput
- Digitization by 10 bit ADCs connected to a PC
- Ar/iC₄H₁₀ 95/5: high gains (20·10³) at moderate voltages (\leq 450 V)

4 / 16

Experimental setup

- CERN/PS beam (T10 zone): e^{\pm} , π^{\pm} , p^{\pm} up to 10 GeV
- Chambers
 - 3 6×16 cm² chambers with GASSIPLEX readout (G₁-G₃)
 - 1 12×32 cm² chamber with GASSIPLEX readout (G_4)

Trigger

- 3 8×32 cm² scintillators for chamber area scans (S₁-S₃)
- 2 crossed 2×4 cm² sc. for shower profile studies (S₄,S₅)
- Cerenkov counter to tag 2 GeV electrons/positrons

Energy measurement principle

• The number of ADC counts *N* measured on a given channel relates to the energy deposited in the gas ϵ above the corresponding pad:

$$N = rac{q_{
m e}GS}{W}\epsilon$$

• Summing over each hit (t = 3 fC), the energy deposit is:

$$\xi = \sum_{\mathrm{i}} \epsilon_{\mathrm{i}} = rac{W}{q_{\mathrm{e}}} \sum_{\mathrm{i}} rac{N_{\mathrm{i}}}{G_{\mathrm{i}}S_{\mathrm{i}}}$$

• Using values averaged over all channels:

$$\xi = \frac{W}{q_{\rm e}} \frac{1}{\overline{G} \ \overline{S}} \sum_{\rm i} \frac{\overline{G} \ \overline{S}}{\overline{d}} \frac{d_{\rm i}}{G_{\rm i} S_{\rm i}} N_{\rm i} = \frac{W}{q_{\rm e}} \frac{1}{\overline{G} \ \overline{S}} \sum_{\rm i} a_{\rm i} N_{\rm i}$$

• However, G_i and d_i are not known \rightarrow deduce a_i from the signal distribution on each pad

Channel inter-calibration

- Measure signal distribution on each pad:
 - Move chamber across the beam, trigger from large scintillators
 - $\bullet\,$ Insure that all charge is collected on one pad $\rightarrow\,$ event with single hit
 - Collect between 200 and 500 events per pad

Inter-calibration:

- $\bullet\,$ Adjust Landau function on measured distribution $\rightarrow\,$ MPV $m_{\rm i}$
- Coefficient a_{i} given by $m_{\mathrm{i}}/\overline{m}$
- Correction applied as: N

Pressure temperature corrections

Pressure and temperature variations impact on the gas gain.
Writing V the mesh voltage and (A,B) two parameters:

$$G(V) = \exp\left(\frac{APg}{T}\exp(-\frac{BPg}{TV})\right)$$

• The gain relative sensitivity to P,T variations can be predicted:

$$C_{P/T} = \left(Ag - \frac{ABPg^2}{TV}\right) \exp\left(-\frac{BPg}{TV}\right)$$

M. Chefdeville (LAPP, Annecy) Beam test of a small MICROMEGAS DHCAL September

Energy and Hit distribution of electron showers

- Check that the high voltage in each chamber is OK
- Insure that a track has traversed the small chambers:
 - request at least one hit in two of the three chambers
 - ullet request aligned hits (centered at the beam profile maximum \pm 1 pad)
- Apply inter-calibration and P,T correction

Beam test of a small MICROMEGAS DHCAL

M. Chefdeville (LAPP, Annecy)

Longitudinal profile of electron showers

- Plot distribution mean versus number of absorber n
 - Adjust 3 parameters on the trend:

$$f(n) = p_0 n^{p_1} \exp(-p_2 n)$$

• Profile maximum at $n = p_1/p_2$

- Small effect of the threshold:
 - Maximum of $f_{\rm hit}$ reached at a slightly larger depth
 - Most secondaries traverse one pad at the beginning of the shower

Energy and Hit distribution of hadrons

- Check that the high voltage in each chamber is OK
- Insure that a track has traversed the small chambers:
 - request at least one hit in two of the three chambers
 - ullet request aligned hits (centered at the beam profile maximum \pm 1 pad)
- Apply inter-calibration and P,T correction

Beam test of a small MICROMEGAS DHCAL

M. Chefdeville (LAPP, Annecy)

Longitudinal profile of hadron showers

- Plot distribution mean versus number of absorber n
 - Adjust 3 parameters on the trend:

$$f(n) = p_0 n^{p_1} \exp(-p_2 n)$$

12 / 16

• Profile maximum at $n = p_1/p_2$

- Comparison with electron showers:
 - Flatter profile, maximum reached at similar depth
 - Small saturation effect

M. Chefdeville (LAPP, Annecy) Beam test of a small MICROMEGAS DHCAL September 16, 2009

Energy and hit distribution of electrons

- Insure that a track has traversed the small chambers:
 - request at least one hit in two of the three chambers
 - request aligned hits (centered at the beam profile maximum)
- Calculate the distance between hit pad i and shower axis
 - use coordinates (x_0, y_0) of beam profile maximum in large chamber

13 / 16

• Small effect of the threshold:

Energy distribution slightly more peaked with a smaller RMS

Energy and hit distribution of hadrons

- Insure that a track has traversed the small chambers:
 - request at least one hit in two of the three chambers
 - request aligned hits (centered at the beam profile maximum)
- Calculate the distance between hit pad i and shower axis
 - use coordinates (x_0, y_0) of beam profile maximum in large chamber

14 / 16

• Small effect of the threshold:

• Energy distribution slightly more peaked with a smaller RMS

Transverse profile of electrons and hadrons

- Difference between energy and hit profile
 - Hit distribution is flatter at the beginning of the shower
 - Can be seen as a larger RMS
 - Applies for electron and hadron showers

- Micromegas behaviour in 2 GeV electron and hadron showers
 - Stable and high gain during test period (a few HV trips over 12 days)
 - P,T variations can be corrected for, or HV adjusted accordingly
- Electron and hadron shower profile
 - Longitudinal profile of electrons shows more variations
 - Transverse profile is similar
- Energy and number of hit distributions
 - Show a similar trend with the number of absorber
 - Longitudinal distribution maximum shifts deeper at larger threshold
 - Larger transverse distribution RMS for hits at the beginning of the shower

16 / 16