

Réf. EDMS: 1011360
Authors: P. BARON, E. DELAGNES
Date: 3rd Oct 2007

## Contents

1 INTRODUCTION ..... 6
1.1 AFTER GENERAL DESCRIPTION ..... 7
2 ARCHITECTURE OF THE FRONT-END PART OF THE CHANNEL .....  9
2.1 GENERAL DESCRIPTION .....  9
2.1.A The Charge Sensitive Amplifier ..... 9
2.1.B The pole-zero cancellation stage (PZC) ..... 10
2.1.C The $R C^{2}$ filter. ..... 11
2.1.D The inverting $x 2$ Gain ..... 11
2.2 The Fixed Pattern Noise Channels (F.P.N) ..... 11
3 ARCHITECTURE OF THE SCA ..... 12
3.1 GENERAL DESCRIPTION ..... 12
3.1.A The memory cell ..... 13
3.1.B The Read amplifier ..... 13
3.1.C The Return buffer ..... 14
3.1.D The Multiplexer ..... 14
3.1.E Propagation times in the SCA. ..... 15
3.2 DESCRIPTION OF THE WRITE AND READ SCA OPERATIONS ..... 15
3.2.A The SCA Write phase ..... 16
3.2.B The SCA Read phase ..... 16
3.2.C Definition of the "Reset states" ..... 19
3.2.D Reading the last read cell index. ..... 19
3.2.E Timing requirements for the SCA signals. ..... 20
4 THE DIFFERENTIAL OUTPUT BUFFER ..... 21
5 ARCHITECTURE OF THE TEST SYSTEM \& "SPY" MODE ..... 22
5.1 GENERAL DESCRIPTION OF THE TEST SYSTEM ..... 22
5.2 GENERAL DESCRIPTION OF THE "SPY" MODE ..... 23
6 THE SLOW CONTROL ..... 24
6.1 Power on Reset ..... 24
6.2 DESCRIPTION OF THE SLOW-CONTROL SERIAL LINK. ..... 24
6.3 RESYNCHRONISATION OF SC_DOUT ..... 25
6.4 Writing mode (address other that 0) in a register of C bits ..... 25
6.5 CASE OF REGISTER 0 ..... 26
6.6 READ OPERATION ON A C BITS REGISTER. ..... 26
6.7 Timing specifications for the AFTER slow-CONTROL SERIAL LINK ..... 27
6.8 DESCRIPTION OF THE REGISTERS. ..... 27
6.8.A Configuration Register 1 ..... 27
6.8.B Configuration Register 2 ..... 29
6.8.C Injection Register 1 ..... 33
6.8.D Injection Register 4 ..... 34
7 POWER SUPPLY CONNECTIONS ..... 35
7.1 CAVITY/LEADFRAME CONNECTION ..... 36
7.2 Protection diodes bias ..... 37
7.3 ANALOG CHANNELS BIAS ..... 37
7.3.A CSA ..... 37
7.3.B Pole-zero Stage. ..... 38
7.3.C $S K$ filter ..... 38
7.3.D x2 Gain ..... 38
7.4 SCA POWER SUPPLIES ..... 39
7.4.A The analog memory cell matrix ..... 39
7.4.B The «return buffer» amplifiers. ..... 39
7.4.C The SCA read amplifiers ..... 39
7.4.D Digital part ..... 40
7.5 OUTPUT MULTIPLEXER AND OUTPUT BUFFER ..... 40
8 THE D.C VOLTAGE AND CURRENT REFERENCES ..... 41
8.1 THE D.C VOLTAGE REFERENCES ..... 41
8.1.A CSA DC output voltage. ..... 41
8.1.B $P Z$ \& $S K$ filter $D C$ output voltages. ..... 42
8.1.C $x 2$-Gain DC output voltage. ..... 42
8.1.D Reference voltages of the $x 2$ Gain and the SCA ..... 42
8.1.E DC input common mode voltage of the differential output buffer ..... 42
8.1.F Common mode output voltage of the output buffer ..... 43
8.2 THE D.C CURRENT REFERENCES. ..... 43
8.2.A Input transistor bias current of the CSA ..... 43
8.2.B Input \& output stage bias currents of the output buffer. ..... 44
9 AFTER CHIP MAIN SIMULATED CHARACTERISTICS. ..... 44
9.1 THE POWER CONSUMPTION. ..... 44
9.2 THE CHIP TRANSFER FUNCTION ..... 44
9.3 The Signal over noise ratio ..... 47
9.3.A Noise. ..... 47
9.3.B The Fixed pattern noise. ..... 51
9.3.C MIP/noise ratio. ..... 51
9.4 SIGNAL SHAPE ..... 54
10 AFTER CHIP PINOUT. ..... 55
11 DIGITAL INPUT/OUTPUT SPECIFICATIONS. ..... 58
12 CHIP LAYOUT ..... 59
ANNEXE 1: PACKAGE DESCRIPTION. ..... 60
FIG 28: PACKAGE SPECIFICATIONS ..... 61
ANNEXE 2: BONDING DIAGRAM OF THE AFTER CHIP. ..... 62
FIG 29: BONDING DIAGRAM ..... 62
ANNEXE 3: LABVIEW VI TO CORRECT ENCODING OF THE "LAST READ CELL" INFORMATION IN THE PROTOTYPE VERSION OF THE CHIP. ..... 63
FIG 30: LABVIEW PROGRAM TO CORRECT THE LAST READ CELL BUG ..... 63
ANNEXE 4: SCHEMATIC OF THE AFTER IMPLEMENTATION IN THE FEC OF T2K. ..... 64
ANNEXE 5: PSRR SIMULATIONS. ..... 65

## INDEX of Figures

Fig 1: Front end electronics of a TPC end-cap module ..... 6
Fig 2: Block diagram of the AFTER chip ..... 7
Fig 3: Schematic of the front-end part of the analog channel ..... 9
Fig 4: Principle of the CSA DC feedback ..... 10
Fig 5: Schematic of the FPN analog channel ..... 12
Fig 6: Schematic of 1 Memory Cells Line ..... 13
Fig 7: SCA multiplexing architecture. ..... 15
Fig 8: Definition of the SCA write and read phases ..... 16
Fig 9: Chronogram of the SCA Read phase ..... 17
Fig 10: Schematic of the readout buffer. ..... 21
Fig 11: Schematic of the test system ..... 22
Fig 12: Schematic of the "spy" mode. ..... 23
Fig 13: Operation of a Slow-control Write operation. ..... 25
Fig 14: Chronogram of a Slow-control Read operation ..... 26
Fig 15: Internal architecture of AFTER. ..... 35
Fig 16: Bonding diagram of AFTER ..... 36
Fig 17: Example of an external reference voltage ..... 41
Fig 18: Principle of external bias current reference. ..... 43
Fig 19: 600fC range: simulated transfer function vs detector capacitance for various peaking times and CSA bias current. ..... 45
Fig 20: 360fC range: simulated transfer function vs detector capacitance for various peaking times and
CSA bias current ..... 45
Fig 21: 240fC range: simulated transfer function vs detector capacitance for various peaking times and
CSA bias current. ..... 46
Fig 22: 120fC range: simulated transfer function vs detector capacitance for various peaking times and
CSA bias current. ..... 46
Fig 23: Simulated (dots) and parameterized (lines) ENC(Cin) in the 120 fC range for ICSA $=800 \mu \mathrm{~A}$ (top) and ICSA $=400 \mu \mathrm{~A}$ ..... 50
Fig 24: MIP to noise ration versus peaking time for different ranges and input capacitors ..... 53
Fig 25: Definition of the shaped signal timing parameters. ..... 54
Fig 26: Pinout of the packaged AFTER chip. ..... 55
Fig 27: Layout of the AFTER chip ..... 59
Fig 28: Package Specifications ..... 61
Fig 29: Bonding diagram ..... 62
Fig 30: Labview Program to correct the last read cell bug ..... 63
Fig 31: PSRR of the AFTER chip ..... 65
Fig 32: PSRR of the AFTER chip. Ideal Supplies for the protections ..... 66
Fig 33: PSRR of the AFTER chip. Ideal Supplies for the protections. Ideal cascod bias ..... 66

## INDEX of Tables.

Table 1: List of the AFTER chip requirements ..... 8
Table 2: Description of data readout frame. ..... 18
Table 3: Specifications for the timing of the digital signals used in the SCA. ..... 20
Table 4: Timing specifications for the slow-control. ..... 27
Table 5: Mapping of the AFTER slow-control registers. ..... 27
Table 6: Description of the configuration Register 1 ..... 28
Table 7: Definition of the dynamic range. ..... 28
Table 8: Definition of the peaking time. ..... 28
Table 9: Definition of the test modes. ..... 28
Table 10: Description of the register 2 ..... 29
Table 11: Selection of the output in the "spy" mode ..... 30
Table 12: Control of the SCA line buffer current ..... 32
Table 13: Control of the SCA group buffer current. ..... 32
Table 14: Control of the SCA output buffer current. ..... 32
Table 15: Description of the register 3 ..... 33
Table 16: Description of the register 4. ..... 34
Table 17: Pins for the cavity connection. ..... 36
Table 18: Pins for the protection diodes bias. ..... 37
Table 19: CSA power supplies. ..... 37
Table 20: PZ supply power supplies. ..... 38
Table 21: SK filter power supplies ..... 38
Table 22:2x Gain power supplies. ..... 38
Table 23: Power supplies of the «return buffer». ..... 39
Table 24: Power supplies of SCA line buffer. ..... 39
Table 25: Power supplies of the digital part ..... 40
Table 26: Power supplies of the output buffers ..... 40
Table 27: Pins setting the CSA DC output voltages. ..... 41
Table 28: Pins setting the PZ \& SK filters DC output voltages ..... 42
Table 29: Pins setting the x2 Gain stage DC output voltage. ..... 42
Table 30: x2 Gain stage \& SCA reference voltages. ..... 42
Table 31: DC input common mode voltage of the differential output buffer. ..... 42
Table 32: common mode output voltage of the differential output buffer. ..... 43
Table 33: Pins for reference current of the CSA ..... 43
Table 34: Pins setting the input \& output bias currents of the output buffer ..... 44
Table 35: Transfer function and $2^{\text {nd }}$ stage contribution for the 4 ranges. ..... 49
Table 36: Equation (3) parameters extracted from fit on simulated data. ..... 49
Table 37: Time occupancy parameters of the filtered signal. ..... 54
Table 38: After pinout description. ..... 57
Table 39: Main specifications for AFTER digital input/ouputs ..... 58

## Document evolutions/modifications :

## 1.1: 3oct 2007

Addition of annex 5

## 1 Introduction

The AFTER (Asic For TPC Electronic Read out) chip is designed to process the signals coming out from the (MICROMEGAS) end-caps of the T2K Time Projection Chamber detector. The front-end electronics of these detectors (Fig 1) is split into two types of boards: FEC \& FEM.


Fig 1: Front end electronics of a TPC end-cap module.
F.E.C (Front end Electronic Card): This card includes 4 AFTER chips together with a quad-channel ADC. This card is plugged directly on the TPC end-cap module through 4 connectors, each connecting the 72 inputs of one AFTER chip to the detector. The analog output of the AFTER chip is digitized by one of the 4 ADC channels of the FEC. The 4 ADC outputs are sent to the FEM through a single output connector. The FEC behaves like a slave device controlled by the FEM. 6 FEC, controlled by a single FEM are required to read one TPC Micromegas module.
F.E.M (Front End Mezzanine): This card controls the 6 FECs of a TPC end-cap module. Each FEC is connected to a FEM by a single connector that provides the main communication signals between the two cards. Some of them have critical timings and make use of LVDS levels, as serial frames coming out from the ADC (up
to 120 MHz DDR) and ADC and SCA clocks. The other less critical signals as slow control and SCA signals are transmitted using CMOS levels

The FEM output data is transmitted to the Digital Concentrator Card, outside of the magnet, through an Optical Transceiver.

### 1.1 AFTER General Description.

The AFTER chip includes 72 channels (Fig 2) handling each one detector pad. A channel integrates mainly: a charge sensitive preamplifier, an analogue filter (shaper) and a 511-sample analog memory. This memory is based on a Switched Capacitor Array structure (SCA), used as a circular buffer in which the analog signal coming out from the shaper is continuously sampled and stored. The sampling is stopped when an external Trigger arrives on the TPC Front End Mezzanine (F.E.M). Then, the 511 samples of each channel are read back, starting by the oldest sample. The analogue data from all the channels are time domain multiplexed toward a single output to be sent to an external 12-bit ADC.


Fig 2: Block diagram of the AFTER chip.

The chip main parameters (gain, peaking time, test mode and asic control) are settable by Slow Control. Two chip inputs permit to calibrate or to test the 72 channels. A "spy" mode is available to control some internal test points (CSA \& PZC outputs and SCA input) of the first analogue channel.

Table 1 gives the main specifications and requirements for the AFTER chip as defined in 2005.

| Parameter | Value |
| :---: | :---: |
| Number of channels | 72 |
| Number of Time bins | 511 |
| MIP charge | 12fC to 60fC |
| MIP/noise | 100 |
| Dynamic range | 10 MIPS on 12bits |
| Dynamic range (output) | 2 V |
| I.N.L | 1\% range 0-3 MIPS; 5\% range 3-10 MIPS |
| Gain | Adjustable (4 values) |
| Sampling frequency | 1 MHz to 50 MHz |
| Shaping Time | 100ns to $2 \mu$ s |
| Read out frequency | 20 to 25 MHz |
| Polarity of detector signal | Negative (anode of Micromegas TPC endcap) or Positive (Cathode). |
| Calibration | Selection 1/72 |
| Test | one internal test capacitor per channel |

Table 1: List of the AFTER chip requirements.

## 2 Architecture of the front-end part of the channel

The architecture of the front-end part has been optimized to match the noise requirements for the TPC and to deliver a shaped signal making possible to perform a precise TPC drift-time measurement. However, it takes also into account the power consumption and silicon area constraints. It can also fit various configurations of detector parameters ( gain, capacitor and drift velocity...), and can deal with the both detector signal (positive or negative) polarities.

### 2.1 General description

The front-end channel (Fig 3 ) is made up of four stages:

- C.S.A: Charge Sensitive Amplifier
- PZC: the pole-zero cancellation stage
- R.C ${ }^{2}$ filter: Sallen\&Key filter
- An inverting $2 \times$ Gain.


Fig 3: Schematic of the front-end part of the analog channel.

### 2.1.A The Charge Sensitive Amplifier

This amplifier is based on single-ended folded cascode architecture. The input transistor is a NMOS device and its dimensions are: $2000 \mu \mathrm{~m} / 0.35 \mu \mathrm{~m}$. Its drain current is defined and controlled on FEC through the pad 126 or 155. It is optionally possible to increase this current by a factor of 2 via the slow control. This bias current choice ( $\max 1 \mathrm{~mA}$ ) will be the result of a trade-off between the noise and power consumption performances that will depend on the application.

The CSA d.c. output voltage is defined also externally through the pad 133 \& 148. A fixed level of 2 V allows the CSA to work with the both polarities of the input signal. The linear range of the CSA output voltage is $\boldsymbol{+} /-\mathbf{6 0 0 m V}$. The charge to voltage conversion is achieved by one of the four feedback capacitors selected by Slow Control. Their values are: 200fF, 400fF, 600fF and 1pF which are defining the four "ranges" of the chip (120fC, 240fC, 360fC and 600 fC ).

## As shown on

Fig 4, the DC feedback of the CSA is achieved by an attenuating current conveyor (AICON). This current conveyor attenuates by a factor A the current flowing through the $R_{a}$ resistor connected between the CSA output and the AICON input, so that it is equivalent to a resistor of value $A .\left(R_{a}+R_{\text {in }}\right)$, where $R_{\text {in }}$ is the input impedance of the ICON. Practically, Ra = Rin= 250 kOhm and 4 different attenuations (from 180 to 900) are integrated, each associated with one of the feedback capacitor to obtain a fixed time constant value of $100 \mu \mathrm{~s}$. This value is small enough to be compatible with the expected event rate in T2K $(0.3 \mathrm{~Hz})$ and large compared with the peaking time of the filter ( $2 \mu \mathrm{~s}$ maximum).

The maximum current that the CSA DC-feedback can source or sink to the detector is 5 nA .


Fig 4: Principle of the CSA DC feedback.

### 2.1.B The pole-zero cancellation stage (PZC)

The PZC stage is used to avoid long duration undershoots at the shaped output. It introduces a zero to cancel the low frequency pole of the CSA and replaces it by a
higher frequency pole. A second branch of the CSA AICON (with an attenuating factor of $B=30$ ) is used to emulate a high value resistor $\left(R_{p}\right)$ placed in parallel with $\mathrm{C}_{\mathrm{p},}$ a 6 pF coupling capacitor, to create a transmission zero cancelling the CSA pole. It is replaced by a new pole Rs.Cs, defined by the feedback network of the stage that participates to the shaping. Its value is selectable, via Slow Control, between sixteen possible values ( 50 ns to $1 \mu \mathrm{~s}$ ). The d.c. output voltage of this block is defined in external through the pad $134 \& 147$ and must be adapted to the polarity of the input signal. For the anode polarity (Micromegas of T2K), this reference voltage (2.2V) is set close to the positive rail so that its output can swing towards the negative rail. In the cathode configuration, the voltage must be tied to 0.7 V .

### 2.1.C The $\mathrm{RC}^{\mathbf{2}}$ filter.

Associated with the previous PZC stage, this 2-complex pole Sallen-Key low pass filter provides a semi-Gaussian shaping of the analog channel. The filter damping factor is $\xi=0.75$, so that the global filter response exhibits a $1 \%$ only undershoot.

The peaking time of the global filter is defined by switching different combination of resistors on both the PZC and filter stages. The available range of peaking time extends from 100 ns to $2 \mu \mathrm{~s}$ (sixteen values). The d.c. output voltage of the filter is defined as for the PZC (pin $134 \& 147$ ), and must be adapted to the polarity of the input signal. In the TPC mode, this reference voltage (2.2V) is set close to the positive rail so that its output swings towards the negative rail. In the inverted configuration, this voltage must be set to 0.7 V .

### 2.1.D The inverting $x 2$ Gain.

This stage provides an extra $\times 2$ inverting voltage gain and the necessary buffering for the signal sampling in the SCA. Its total dynamic (full range) is 1.5 V , mainly limited by slew rate effects. As it is an inverter stage, its d.c. output level voltage must be set close to the negative rail to deal with the positive swing of the signal ( 0.7 V for T 2 K ). This voltage is defined through the pads $135 \& 146$. Its input common-mode voltage is defined by the pads $138 \& 142$. These 2 pins are also used to supply the reference voltage of the SCA at a fixed value of 0.7 V .

### 2.2 The Fixed Pattern Noise Channels (F.P.N)

A part of the SCA noise will be probably coherent between channels. To perform common mode rejection, 4 extra channels FPN (Fixed Pattern Noise) are included in the chip. The front-end part of these channels (Fig 5) only includes the inverting $2 x$ Gain stage for which the inputs have been connected to the input reference voltage. The F.P.N channels will be treated by the SCA exactly as the other channels. Off-line, their outputs can be subtracted to the 72 analog channels. This pseudo-differential operation is supposed to reject the major part of the coherent noise due to $2 x$ Gain and SCA such as clock feed-through and couplings through the substrate. It also improves the power supplies rejection ratio (PSRR) of the chip. These channels are distributed uniformly in the chip as shown on Fig 15 . Their readout indexes are: $13,26,51 \& 64$.


Fig 5: Schematic of the FPN analog channel.

## 3 Architecture of the SCA

The analog memory is based on the Switched Capacitor Array structure. It is used as a 511 cell-depth circular buffer in which the analog signal coming out from the front-end analog channel is continuously sampled and stored at a sampling rate Fs. The sampler is stopped on the trailing edge of the write signal of the chip that is generated by the FEM after the reception of the external TRIGGER signal. Then for each channel, all or one part of the 511 samples are read back, starting by the oldest sample. The analog data coming from the 76 channels are time-domain multiplexed and read toward a single external 12-bit ADC channel.

### 3.1 General description

The Switch Capacitor Array includes 76 channels of each 511 capacitor cells. The 511 cells of a channel are arranged in line. All the capacitors of a line are sharing the same input analogue and reference busses and the same read top and bottom busses connected to a read amplifier. All the cells of the 76 channels with the same index (namely a column) are sharing the same write and read column signals. It means that all the cells of a column are written or read at the same time. The write and read operations are performed successively.

### 3.1.A The memory cell

The memory cell is based on a capacitor of 300fF associated with 4 switches (Fig 6).


1 line (511 Memory Cells)
Fig 6: Schematic of 1 Memory Cells Line.

The Write operation in the cell of column $\mathbf{i}$ is performed by successively closing and opening the switches 1 and 2 of a cell by the command line Write_col_i (called the write pointer). The write pointers are the successive outputs of a circular shift register clocked by Wck.
The Read operation in the cell of column $\mathbf{i}$, is performed by:

- Resetting the read amplifier and the read bus.
- Closing switches 3 and 4 of a cell by the command line Read_col_i (called the read pointer).
- Multiplexing the output by an individual command line Read_line to the chip output.


### 3.1.B The Read amplifier.

The read-amplifier is an operational amplifier with its positive input connected to the reference voltage of the SCA. It has two successive modes of operations:

- When not used (i.e. during the write operation) or just before reading, is in reset mode. During this phase, its two inputs are short-circuited to the reference voltage of the SCA and one of its internal nodes is grounded so that its output saturates to vdd.
- During the read operation, the capacitor to read is placed in feedback across its negative input and its output.


### 3.1.C The Return buffer.

Each line includes such a buffer. It provides an internal low impedance output able to source or sink the dynamic current flowing in the return bus during the charging and the switching operations in the SCA. It improves the linearity and crosstalk performances of the SCA. As its input impedance is high, the SCA reference external voltage source impedance can be high.

As soon it stays in the 0.5-1.5 range, the reference voltage value of the SCA is not critical if the same voltage is used as reference for the read amplifier and the return buffer. The lower values will increase the input bandwidth of the SCA.

### 3.1.D The Multiplexer.

To cope with the high read-out frequency Frck ( 20 MHz ), the output multiplexing of the analog data is performed in two stages (Fig 7). In the first stage, two groups of 38 channel outputs (even and odd channels) are multiplexed toward two intermediate multiplexing buffers. A second stage multiplexes the output of the two prior multiplexers towards a unique "final" output buffer. This architecture permits to relax the speed constraints on the design. Actually, the first stage multiplexers, with heavily loaded outputs, are working at Frck/2 frequency. They are driven by clocks shifted by 1/Frck. The second stage, is working at full speed (Frck)


Fig 7: SCA multiplexing architecture.

### 3.1.E Propagation times in the SCA.

To make the packaging of the AFTER chip easier, the chip analog inputs are split in two groups. The inputs of channels with index from 1 to 36 are located in the left side of the chip whereas those from 37 to 72 are in the right side. It implies that in the SCA, the analogue signal propagates from the left to the right for the first group and from the right to the left for the second group.

The write clock, synchronizing the write pointer is propagating from right to left (for the both groups of channels). The propagating time of the clock from one side to the other side as been minimized by layout but is still estimated to 1.5 ns .
This implies that:

- for the 37-72 channels, the clock and the signal are propagating in the same direction. As the signal bus has been designed to have a propagation time similar to the one of the clock, only a small sampling skew (few 10 ps ) due to geometry is expected.
- For the 1-36 channels, the two signals are propagating in opposite directions. It is therefore expected to have a larger sampling skew for these channels. ( $\sim 3 n s$ peak to peak). This skew is not random at all as it is geometrically dependant, and could be, if needed, calibrated and compensated. On the leftmost cells (those with the smallest indexes), the signal is put forward the clock by 1.5 ns whereas it is delayed by 1.5 ns for the rightmost ones. The delay for intermediate cells is a linear function of their position.

To avoid a brutal timing gap between two consecutive cells, the SCA structure is folded. Cells from 0 to 255 are placed on the SCA from the left to the right whereas cells from 256 to 510 are placed from the right to the left.

### 3.2 Description of the Write and Read SCA operations.

The SCA uses 4 digital command signals.

- Two clocks sequencing the write and read operations:
- Wck : the write clock
- Rck : the read clock.

These clocks are active on their rising edges, and may be interrupted when they are not used.

- Two frame signals defining the write and read operations (Fig 8):
- Write: defining the write operation.
- Read: defining the read operation.

These two signals should not overlap and are active on their high levels.
The clock signals are provided using differential LVDS levels. The write and read signals are received in CMOS levels.


Fig 8: Definition of the SCA write and read phases.

### 3.2.A The SCA Write phase

The write operation starts when the Write signal is set to 1 . Its positive edge asynchronously resets the write pointer to the column 0 . This pointer is then shifted to the successive columns on the rising edge of Wck, performing the writing operation. When Write comes back to 0 , the write pointer position is frozen and the writing operation is stopped.

The Write signal can be set or reset asynchronously with the clock, but in this case the write operation on the last cell may be incomplete. So it is better to change the state of the Write signal on the negative transition of Wck.
To complete the write operation, at least one Wck positive edge is required after the Write signal falling edge.

### 3.2.B The SCA Read phase

The read operation is initiated when the Read signal is set to 1 .
Its positive edge asynchronously copies the write pointer to the read pointer and reset the multiplexer register. As long as Read stays to 1, the analogue signals are sequentially multiplexed to the output at each rising edge of the Rck. The first column read is the one following the last written. To read a column, 79 Rck periods are
needed (Fig 9). The 3 first output samples are corresponding to 3 "reset level" defined in 3.2.C. The 76 following are corresponding to the analogue data stored in the different lines of the column starting from line 1 and multiplexed alternately from group 0 and group 1. After the last (76th) cell of this column, the read pointer is shifted and the same operation is performed on the next column.


Fig 9: Chronogram of the SCA Read phase.

When Read comes back to 0, this sequence is asynchronously interrupted and the current address of the read pointer is encoded and multiplexed to the output. The negative Read transition can occur whenever the controller decides it. This permits to read a limited number of cells.

This operation is then finished. It is also interrupted when Write is set to 1.
As for Write, it could be convenient to set or reset the Read signal on the negative edge of Rck.

The read sequence order of the 76 channels is summarized in the Table 2.

| Readout Index | Channel index | Pin Number of the channel input | Readout Index | Channel index | Pin Number of the channel input |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Reset1 |  |  |  |  |
| 2 | Reset2 |  |  |  |  |
| 3 | Reset3 |  |  |  |  |
| 4 | 1 | 36 | 42 | 37 | 120 |
| 5 | 2 | 35 | 43 | 38 | 119 |
| 6 | 3 | 34 | 44 | 39 | 118 |
| 7 | 4 | 33 | 45 | 40 | 117 |
| 8 | 5 | 32 | 46 | 41 | 116 |
| 9 | 6 | 31 | 47 | 42 | 115 |
| 10 | 7 | 30 | 48 | 43 | 114 |
| 11 | 8 | 29 | 49 | 44 | 113 |
| 12 | 9 | 28 | 50 | 45 | 112 |
| 13 | 10 | 27 | 51 | 46 | 111 |
| 14 | 11 | 26 | 52 | 47 | 110 |
| 15 | 12 | 25 | 53 | 48 | 109 |
| 16 | FPN1 |  | 54 | FPN3 |  |
| 17 | 13 | 24 | 55 | 49 | 108 |
| 18 | 14 | 23 | 56 | 50 | 107 |
| 19 | 15 | 22 | 57 | 51 | 106 |
| 20 | 16 | 21 | 58 | 52 | 105 |
| 21 | 17 | 20 | 59 | 53 | 104 |
| 22 | 18 | 19 | 60 | 54 | 103 |
| 23 | 19 | 18 | 61 | 55 | 102 |
| 24 | 20 | 17 | 62 | 56 | 101 |
| 25 | 21 | 16 | 63 | 57 | 100 |
| 26 | 22 | 15 | 64 | 58 | 99 |
| 27 | 23 | 14 | 65 | 59 | 98 |
| 28 | 24 | 13 | 66 | 60 | 97 |
| 29 | FPN2 |  | 67 | FPN4 |  |
| 30 | 25 | 12 | 68 | 61 | 96 |
| 31 | 26 | 11 | 69 | 62 | 95 |
| 32 | 27 | 10 | 70 | 63 | 94 |
| 33 | 28 | 9 | 71 | 64 | 93 |
| 34 | 29 | 8 | 72 | 65 | 92 |
| 35 | 30 | 7 | 73 | 66 | 91 |
| 36 | 31 | 6 | 74 | 67 | 90 |
| 37 | 32 | 5 | 75 | 68 | 89 |
| 38 | 33 | 4 | 76 | 69 | 88 |
| 39 | 34 | 3 | 77 | 70 | 87 |
| 40 | 35 | 2 | 78 | 71 | 86 |
| 41 | 36 | 1 | 79 | 72 | 85 |

Table 2: Description of data readout frame.

### 3.2.C Definition of the "Reset states"

The three consecutive so-called reset states are corresponding to the SCA output states when a write operation is performed in the SCA or when the read operation of a column is started. These states can be used for debugging or testing purpose.

The first reset state corresponds to the phase during which the read-amplifier is reset (start of column read or write operation). During this phase, the read-amplifier output goes to vdd, but the multiplexer output state depends on configuration of the bits 6 and 7 of register 2 . If bit 6 is set to 0 , the reference voltage used to define the x 2 gain stage output voltage (Vdc_g2d) is multiplexed toward the chip output. It can be used to measure the noise of the AFTER output stages (buffer of the multiplexer + differential output buffer). If bit 6 is set to 1, a digital voltage, defined by the bit 7 is multiplexed toward the output. This can be used as marker to check the synchronisation of the ADC output data.

During the second reset state, the channel 1 output is multiplexed toward to the output while the capacitor to read is placed across the read amplifier. So the output signal first increases in the direction of vdd during $\sim 10 \mathrm{~ns}$ corresponding to the settling times of the mux and the output buffer. Once the mux output has reached the read amplifier output voltage, the output follows the output of the read amplifier settling towards its final value.

During the third reset state, the chip output voltage corresponds to the Vdc_g2d voltage sampled on the analogue bus of the multiplexer.

### 3.2.D Reading the last read cell index.

After the READ signal comes back to 0, a special frame, coding the physical index of the last read cell, is sent to the chip output. This serial frame use binary levels which are clamped internally in the chip by the multiplexer and the output buffer. To recover the digital levels, the user can keep the state of the ADC MSB only. The frame is build as following:

- 8 binary low levels.
- the 9 bits coding the last read cell index sent serially (MSB first).
- 61 binary low levels.

At the end of this operation, the analogue output comes back to the reset level of the read amplifier of channel 1.

The last read cell information can be used to check the synchronisation between SCA chips or to correct data from physical fix pattern noise (i.e. pedestal dependency with the physical index of the SCA cell).

If the bit\#4 of the register\#2 is set to 1 , the control word "101011001" is sent instead the last read cell address for debugging purpose.

In the prototype of the AFTER chip, there is a mistake in the design of the block performing the encoding of this last read cell. This will be corrected for the production of the chip. Nevertheless, the effect of this error is only a permutation between codes and can be easily corrected by the following algorithm (a Labview program performing this correction is given in Annexe 2):

If the cell index is <= $\mathbf{2 5 5}=>$ no encoding problem.
Else it must be re-encoded as following:
In Last_cell<8:0> where last_cell<8> is the MSB:
the Nibble Last_cell<7:4> must be replaced by its complement to 1

### 3.2.E Timing requirements for the SCA signals.

Table 3 summarizes the requirements for the digital signals driven the SCA.

| Name | Description | Min | Typ. | Max |
| :--- | :--- | :---: | :---: | :---: |
| F Wck | frequency of Wck | 0 | 50 MHz | 100 MHz |
| F Wck jitter | Jitter of Wck | 0.25 | 50 ps rms | 100 ps rms |
| F Wck cycle | Duty cycle of Wck | 0.5 | 0.75 |  |
| t Wck to Fw | Time between a Write <br> transition and positive edge of <br> Wck | 5 ns |  |  |
| t Wck to Write | Time between positive edge of <br> Wck and a Write transition. | 5 ns |  |  |
| t Wck to <br> sample | Time between positive edge of <br> Wck and the sample operation |  | 3ns |  |


| F Rck | frequency of Rck | 0 |  | 25 MHz |
| :---: | :---: | :---: | :---: | :---: |
| Rck jitter | Jitter of Rck |  |  | 100ps rms |
| Rck_cycle | Duty cycle of Rck | 0.25 | 0.5 | 0.75 |
| t Read to Rck | Time between a Read transition and positive edge of Rck | 5 ns |  |  |
| t Rck to Read | Time between positive edge of Rck and a Read transition. | 5ns |  |  |
| t Rck to Multiplex | Time between positive edge of Rck and the effective multiplexing |  | 6 ns |  |
| tr multiplex | Stabilization time of the analog signal at the multiplexer output |  | 35 ns |  |

Table 3: Specifications for the timing of the digital signals used in the SCA.

## 4 The Differential Output Buffer

This buffer is designed to drive differentially the external 12-bit ADC (AD9229) at up to 20 MHz readout frequency. Its input, connected to the SCA multiplexer output is single-ended while its output is differential. As shown on Fig 10, the single-ended to differential conversion is achieved using a full differential amplifier with its negative input connected to a reference voltage Vicm This buffer also provides a gain of 1.328 between the differential output ( $\mathbf{V}_{\text {op }}-\mathbf{V}_{\text {on }}$ ) and its input $\left(\mathbf{V}_{\mathbf{i p}}\right)$ to fit with the differential ADC input range ( $+/-1 \mathbf{V}$ ). Thanks an internal common mode feedback, the common mode output voltage of the amplifier $\left(\left(\mathbf{V}_{\text {op }}+\mathbf{V}_{\text {on }}\right) / 2\right)$ is equal to the voltage applied on the vocm (Pin 68) input. Its standard value is VddADC/2 $=1.65 \mathrm{~V}$.
The Vicm (pin 71) external input voltage permits to adjust the input range of the buffer. To optimize it, this voltage must be set to a voltage equal to the peak voltage of a pulse corresponding to half the chip dynamic range:

## Vicm $=\left[\mathrm{Vdc}_{\text {scA output }}+/-\right.$ Vpeak $_{\text {sCA output }} / 2$ (+ for anode mode, - for the cathode one)

The buffer has to deal with the ADC input architecture and the parasitic elements due to interconnection on the FEC. It is designed to have a $1 / 1000$ settling time smaller than 25 ns corresponding to half the ADC clock period.


Fig 10: Schematic of the readout buffer.

## 5 Architecture of the Test system \& "spy" mode

The AFTER chip includes a test system useful for: electrical calibration, asic test bench and functionality control of all electronic channels (Asic to acquisition board). The chip also offers the possibility to spy 3 critical signals of the front-end part of analogue channel number 1: CSA, PZC and Gain-2 outputs.

### 5.1 General description of the test system

The AFTER asic offers 3 different modes of test: calibration, test and functionality.
The Calibration operation consists in generating the same charge on the inputs of all the channels of all the asics of a given FEC or of all the FEC of a TPC readout plan. Therefore, the charge pulse is generated outside of the chip, directly on the FEC. The charge injection is generated by applying a voltage step to a precision capacitor connected to the input of the selected channel via the In_cal input (pin 39).
The channel selection is made by switches inside the chip configured by slow control (Fig 11).


Fig 11: Schematic of the test system

For the two other modes, the charge injection is generated through internal capacitors driven by an externally generated voltage applied on the pad In_testfonc (pin 40).

In the test mode, four different values of injection capacitor, one for each charge range, are used. This permits working with the same test voltage pulse level for the 4 ranges. The selection of the injection capacitor is automatically done when the charge range is selected.

In the functionality test mode, a single capacitor (200fF) per channel is used.
For all the 3 test modes, the selection of the tested channel is made via slow control.

For the two first modes, only one tested channel must be selected whereas up to the 76 channels can be selected when the functionality mode is used.

For the FPN channel, only the functionality test is usable. In this case, the input voltage step is applied directly to the input of the inverting $2 x$ GAIN stage of the selected FPN channel.

### 5.2 General description of the "spy" mode

This mode permits to visualize on an oscilloscope the outputs of the CSA, PZC block and Gain-2 of the channel number 1. This feature will be useful to compare experimental and simulation results. By slow control, one of these 3 signals (Fig 12) can be multiplexed, through an internal buffer, to the pad Out_debug (pin 46). If the "spy" mode is not selected, the internal buffers are put in a standby mode.


Fig 12: Schematic of the "spy" mode.

## 6 The Slow Control

The slow control permits to program various chip parameters (gain, shaping time, test mode ...) and to access to specific modes of operation. It is a serial protocol, used in several ASICs designed in DAPNIA laboratory. It gives access in write or read mode to the four internal registers of the chip:

- 2 configuration registers: 16 -bit wide.
- 2 channels selection registers: 38 -bits wide.


### 6.1 Power on Reset

When the chip is powered on, an internal "power on reset" device delivers a reset pulse (about 1 ms of duration) resetting the 4 registers (all bits to 0 )

### 6.2 Description of the slow-control serial link.

The link uses $\mathbf{4}$ signals. They all use CMOS [ $0 \mathrm{~V} ; 3.3 \mathrm{~V}$ ] level:

- Sc_din [pin $N^{\circ} 51$ ]: input data of the serial link.
- Sc_ck [pin $N^{\circ} 53$ ]: clock of the serial link.
- Sc_en [pin $N \circ 52$ ]: enable of the serial link.
- Sc_dout [pin $\left.N^{\circ} 54\right]$ : output data of the serial link.

The signals Sc_din \& Sc_en must be synchronous to the rising edge of Sc_ck. The data are sampled on the input lines, decoded and operations of reading/writing are carried out, by the asic, on the falling edge of Sc_ck. Thus, the data at the output of Sc_dout will be synchronous on this edge.
On Sc_din, the data frame is defined as:

> [r/wb] [Ad6... Ad0] [DNBD-1...D0]
[r/wb]: This first bit defines the type of operation. $\mathbf{r} / \mathbf{w b}=1$ : readout; 0 : write.
[Ad6... Ad0]: These 7 bits give the address of the target register.
[DNBD-1...D0]: This is the NBD bits of data to transmit.
The most significant bit of the address and the data is always sent (or read) first.
The Sc_en signal frames the data sent on Sc_din. It must go up simultaneously with the positioning of $[\mathbf{r} / \mathbf{w b}]$ and must go down one cycle of $\boldsymbol{S c} \_\boldsymbol{c k}$ after the positioning
of the last bit of data (DO) on Sc_din. Thus, the data packet defined by the setting of the Sc_en signal to 1 must frame [8+ NBD falling edges] of Sc_ck.

The Sc_ck clock must be present immediately after the beginning of the data frame and must continue at least during three clocks (falling edge) after the falling edge of Sc_en. After that, it is better to stop it (its idle state can be high or low).

Between the slow-control frames, the Sc_dout output is in idle state. If the force_eout bit of the register 2 is high, this output keeps its last valid value. If it is low (defult mode), the output is in high impedance state.

### 6.3 Resynchronisation of Sc_dout.

All the data on the Sc_dout line are, by default, locally synchronised on the Sc_ck falling edge. But this synchronising is partially lost due to the different transit times in the chip. It is also possible, by slow control, to synchronise the signal on Sc_dout. This is done by the bit 9 (out_resync) of the register 2, and the choice of active edge by the bit 10 (synchro_inv). If the state is " 1 ", the synchronisation will be made on the falling edge of $\mathbf{S c} \boldsymbol{c} \boldsymbol{c k}$; " 0 " on the rising edge. All the chronograms on the next figures are in the case where the slowcontrol bit out_resync is " 0 ".

### 6.4 Writing mode (address other that 0) in a register of C bits.

The write mode (Fig 13) is defined by the first bit $\mathbf{r} / \mathbf{w b}=\mathbf{0}$. The falling edge of Sc_en starts the writing of the $\mathbf{C}$ last bits on Sc_din in the target register. After the eighth falling edge of Sc_ck, Sc_dout leaves its idle state. During C clocks, Sc_dout takes the $\mathrm{Y}<\mathbf{n}: 1>$ states, according to the history on the $\mathbf{S c}$ _din line. Then, it will take the states present $C$ clocks before ( $A<0>, D<15>, D<14>$ in the normal case where $\mathrm{C}=\mathrm{NBD}$ ).


Fig 13: Operation of a Slow-control Write operation.

Sc_dout will come back to its idle state 3 rising edges of the clock after the falling of Sc_en.

The number of NBD bits present in the data part of Sc_din can be greater than the size of the register ( $\mathbf{C}$ bits). In this case, only the $\mathbf{C}$ last bits will be written in the register. The NBD-C-2 first bits of the data will go out on the Sc_dout after A0, D15 \& D14. This feature can be used to test the serial link.

### 6.5 Case of Register 0.

The register $\mathbf{0}$ doesn't physically exist. But, when it is addressed in write mode, Sc_dout recopy the data on Sc_din (after the eighth falling edge of Sc_ck). Sc_dout comes back to the idle state (3 rising edges after the falling edge of Sc_en).

### 6.6 Read operation on a C bits Register.

In the readout mode (Fig 14), Sc_en must cover more than 8+C-2 falling edges of Sc_ck. A minimum of 3 falling edges of $\boldsymbol{S c} \boldsymbol{c} \boldsymbol{c k}$ after the falling of $\boldsymbol{S c}$ _en, is necessary to finish the reading phase.


Fig 14: Chronogram of a Slow-control Read operation.

The first bit on Sc_din must be to "1" (r/wb). Thus the 7 other bits define the address of the register. The next bits can be indefinite.
At the eighth falling edge of $\boldsymbol{S c} \boldsymbol{c} \boldsymbol{c k}$, the address is decoded and $\boldsymbol{S c} \boldsymbol{c}$ dout leaves the idle state. During 1 clock cycle, its state $\mathbf{Y}$ depends on history of the serial link.
At the ninth falling edge of $\boldsymbol{S c} \boldsymbol{c} \boldsymbol{c k}$, the data of the register is serialized toward Sc_dout during $\mathbf{C}$ clock cycles. After these $\mathbf{C}$ clock cycles, the data coming out from the Sc_dout are no more valid.

As for the writing phase, Sc_dout go back to the idle state, $\mathbf{3}$ clock cycles after the falling edge of Sc_en.

### 6.7 Timing specifications for the AFTER slow-control serial link.

The timing specifications for the slow-control link are summarized in Table 4.

| Name | Description | Min | Typ | Max |
| :---: | :---: | :---: | :---: | :---: |
| FSc_ck | Slow control clock frequency | 0 |  | 30 MHz |
| $t H$ Sc_ck, tL_Sc_ck | Slow control clock minimum duration at " 1 " (or " 0 ") state | 10ns |  |  |
| $t$ Sc_en to Sc_ck | delay between SC_en transition \& rising edge of Sc_ck | 10ns |  |  |
| $t$ Sc_din to Sc_ck | delay between SC_din transition \& rising edge of Sc_ck | 10ns |  | 15ns |
| $t$ Sc_ck to Sc_dout | delay between rising edge of Sc_ck \& Sc_dout transition | 10ns |  |  |

Table 4: Timing specifications for the slow-control.

### 6.8 Description of the registers.

The AFTER chip includes 4 control registers; two 16 -bit wide and two of 38 -bits wide. Their mapping (also including the dummy register of address 0 ) is given in Table 5.

| Address |  | name | width |  |
| :---: | :--- | :--- | :--- | :--- |
| 0 | access | action |  |  |
| 1 | Configuration 1 | 16 bits | R/W | used to test the serial link (cf 6.5) |
| 2 | Configuration 2 | 16 bits | R/W | special modiguration |
| 3 | Injection 1 | 38 bits | R/W | selection of tested test config. |
| 4 | Injection 2 | 38 bits | R/W | selection of tested channels |

Table 5: Mapping of the AFTER slow-control registers.

### 6.8.A Configuration Register 1.

This 16-bit register is located at address number 1 (Table 6). Its 9 first bits are defining the configuration for the analog part of the channel before the SCA. The last 3 bits allow controlling the chip power consumption.

| bit | name |  |
| :---: | :--- | :--- |
| 0 | Icsa | if 1, the nominal CSA bias current is $\times 2$ |
| 1 | Gain0 | LSB of the gain tuning |
| 2 | Gain1 | MSB of the gain tuning |
| 3 | Time0 | LSB of the filter peaking time |
| 4 | Time1 | bit 1 of the filter peaking time |
| 5 | Time2 | bit 2 of the filter peaking time |
| 6 | Time3 | MSB of the filter peaking time |
| 7 | Test0 | LSB of the test mode register |
| 8 | Test1 | MSB of the test mode register |
| 9 |  |  |
| 10 |  |  |
| 11 |  |  |
| 12 |  |  |
| 13 | power_down_write | if 1, put the write section in power down mode |
| 14 | power_down_read | if 1 put the read section in power down mode |

$15 \mid$ alternate_power $\begin{aligned} & \text { if 1, set alternatively the read and write sections in power } \\ & \text { down mode. }\end{aligned}$
Table 6: Description of the configuration Register 1.

## - bit Gain0 to Gain1:

These 2 bits are defining the input charge range. This range is made by selecting one feedback capacitor among 4 on the C.S.A (Table 7).

| Gain1 | Gain0 | Charge Range |
| :---: | :---: | ---: |
| 0 | 0 | $120 f C$ |
| 0 | 1 | $240 f C$ |
| 1 | 0 | $360 f C$ |
| 1 | 1 | $600 f C$ |

Table 7: Definition of the dynamic range.

- bit Time0 to Time3:

These 4 bits are setting the peaking time of the shaper (Table 8), by switching resistors on the PZC \& SK filter.

| Time3 | Time2 | Time1 | Time0 | Peaking Time [5\%_100\%] (ns) |
| :---: | :---: | :---: | :---: | ---: |
| 0 | 0 | 0 | 0 | 116 |
| 0 | 0 | 0 | 1 | 200 |
| 0 | 0 | 1 | 0 | 412 |
| 0 | 0 | 1 | 1 | 505 |
| 0 | 1 | 0 | 0 | 610 |
| 0 | 1 | 0 | 1 | 695 |
| 0 | 1 | 1 | 0 | 912 |
| 0 | 1 | 1 | 1 | 993 |
| 1 | 0 | 0 | 0 | 1054 |
| 1 | 0 | 0 | 1 | 1134 |
| 1 | 0 | 1 | 0 | 1343 |
| 1 | 0 | 1 | 1 | 1421 |
| 1 | 1 | 0 | 0 | 1546 |
| 1 | 1 | 0 | 1 | 1626 |
| 1 | 1 | 1 | 0 | 1834 |
| 1 | 1 | 1 | 1 | 1912 |

Table 8: Definition of the peaking time.

- bit Test0 to Test1:

These bits are defining the test modes (Table 9).

| Test1 | Test0 | Test mode |
| :---: | :---: | ---: |
| 0 | 0 | nothing |
| 0 | 1 | calibration |
| 1 | 0 | test |
| 1 | 1 | functionality |

Table 9: Definition of the test modes.

The calibration, test \& functionality tests require the choice of one or several channels. This is done by the registers $3 \& 4$.

- bits power_down_write, power_down_read \& alternate_power.

These bits give the possibility to manage the power consumption by the fact that when the chip is in the write mode, the reading part is not used and therefore the SCA line buffer can be put in a standby mode. In the read mode, as the analog data is stored in the SCA, the writing part of the analog channel (pole-zero cancellation stage, Sallen\&Key filter and Gain-2) can be put also in a standby mode. This functional mode is activated by the bit alternate_power. It is also possible to force independently the writing and the reading parts in a standby mode by the bits power_down_write and power_down_read. The effects of this mode on the power consumption are presented in the paragraph 9.1.

### 6.8.B Configuration Register 2

This 16 -bit register located at address $n^{\circ} 2$. It is used to test and the control of the SCA reading (Table 10).

| bit | name | action |
| :---: | :---: | :---: |
| 0 | debug0 | LSB of the debug mode register |
| 1 | debug1 | MSB of the debug mode register |
| 2 |  |  |
| 3 | read_from_0 | if 1, force to start the readout from column 0 |
| 4 | test_digout | if 1 , a test pattern is serialized to the output instead of the 9bit address of the last read column |
| 5 | set_10_when_rst | Not used. Must be set to 0 |
| 6 | en mker rst | if 1, a "digital" marker (near gnd or vdd levels) is multiplexed to the analog output during "reset operation" |
| 7 | rst_lv_to 1 | set the level of the digital marker (when en_mker_rst=1) |
| 8 | boost_pw | If 1, the output current of the analog block Gain-2 is increased (+20\%) |
| 9 | out_resync | If 1 , the SC output data is resynchronized by a clock edge (selected by synchro_inv) |
| 10 | synchro_inv | select the edge for the synchronizing of the SC output data ( $0=$ rising, $1=$ falling) |
| 11 | force_eout | If 1 , inhibit the 3rd state functionality of the SC output buffer. |
| 12 | Cur_RA<0> | These 2 bits manage the current of the SCA line buffers |
| 13 | Cur_RA<1> |  |
| 14 | Cur_BUF<0> | These 2 bits manage the current of the SCA output buffers |
| 15 | Cur_BUF<1> |  |

Table 10: Description of the register 2.

## - bits Debug0 to Debug1

These 2 bits allow the user to visualize on an oscilloscope the outputs of the CSA, PZC filter and Gain-2 from the channel number 1. Depending on these bits (see Table 11), one among these outputs is multiplexed toward the Out_debug pad [pin $\left.N^{\circ} 46\right]$ via an internal buffer.

| Debug1 | Debug0 | Out_debug (canal1) |
| :---: | :---: | ---: |
| 0 | 0 | Standby |
| 0 | 1 | $C S A$ |
| 1 | 0 | $C R$ |
| 1 | 1 | Gain2 |

Table 11: Selection of the output in the "spy" mode.

- read_from_0; test_digout; set_10_when_rst; en_mker_rst; rst_lv_to 1.

These 5 bits act directly on the readout of the SCA and will be used essentially for the test of the asic and FEC prototypes.
read_from_0: In the normal mode, the readout starts from the column following the last written. Set this bit to "1", forces to start the readout from the physical column $\mathbf{0}$.
test_digout: if "1", a test pattern ("10101100") is serialized to the output instead of the 9bit address of the last read column.
set_10_when_rst: not used, for normal operation must be set to 0 .
en_mker_rst: If "1", a "digital" marker (near gnd or vdd levels) is multiplexed to the analog output during the first of the "reset states".
rst_lv_to 1: Set the level of the digital marker (when en_mker_rst="1"). "0" means level near gnd; "1" means level near Vdd.

- boost_pw.

If 1, the output current of the GAIN-2 amplifier is increased by $+20 \%$. It can be used for very fast sampling frequencies and in case of chip fabricated in a "slow" corner process.

- out_resync, synchro_inv \& force_eout

These 3 bits change some configurations for the Slow Control. out_resync: If 1, the Sc_dout output data is resynchronized by a clock edge Sc_ck, selected by synchro_inv.
synchro_inv: Selects the edge for the synchronizing of the Sc_dout output data. "0" select the rising edge, " 1 " the falling.
force_eout: "1" inhibits the 3rd state functionality of the SC output buffer.

- bits CUR_RA <1:0>

These 2 bits are controlling the bias current of the 76 SCA line readout buffers. This control is also managed by the bits power_down_read \& alternate_power of the register 1. The Table 12 gives the different values.

|  |  | power_down_read <br> \& alternate_power = "0" | power_down_read or alternate_power = "1" |
| :---: | :---: | :---: | :---: |
| CUR_RA<1> | CUR_RA<0> | I power | 1 power |
| 0 | 0 | 211uA | 172uA |
| 0 | 1 | 274uA | 211uA |
| 1 | 0 | 395uA | 274uA |
| 1 | 1 | 735uA | 395uA |

Table 12: Control of the SCA line buffer current.
The nominal configuration is: « $10 »$.

- bits CUR_BUF <1:0>

These 2 bits are controlling the bias current of the group mux buffer of the 2 groups (one buffer for 38 lines) and also those of the final mux buffer (Fig 7). The Table 13 and Table 14 show the different values for the 2 kind of buffers.

| CUR_BUF<1> | CUR_BUF<0> | I power on group mux buffer |
| :---: | :---: | ---: |
| 0 | 0 | $132 u A$ |
| 0 | 1 | $169 u A$ |
| 1 | 0 | $239 u A$ |
| 1 | 1 | $433 u A$ |

Table 13: Control of the SCA group buffer current.

| CUR_BUF $<1>$ CUR_BUF<0> | I power on final mux buffer |  |
| :---: | :---: | ---: |
| 0 | 0 | $482 u A$ |
| 0 | 1 | $620 u A$ |
| 1 | 0 | $831 u A$ |
| 1 | 1 | $1.610 m A$ |

Table 14: Control of the SCA output buffer current.
The nominal configuration is: « $10 »$.

### 6.8.C Injection Register 1.

This 38 bits register is located at address number 3. It is used to select the channel for the test (Table 15). The channel number goes from 1 to 36 , and 1 to 2 for the FPN channel.

| bit | name | action |
| :---: | :--- | :--- |
| 0 | select_c36 | Selection of the channel 36 for the test |
| 1 | select_c35 | Selection of the channel 35 for the test |
| 2 | select_c34 | Selection of the channel 34 for the test |
| 3 | select_c33 | Selection of the channel 33 for the test |
| 4 | select_c32 | Selection of the channel 32 for the test |
| 5 | select_c31 | Selection of the channel 31 for the test |
| 6 | select_c30 | Selection of the channel 30 for the test |
| 7 | select_c29 | Selection of the channel 29 for the test |
| 8 | select_c28 | Selection of the channel 28 for the test |
| 9 | select_c27 | Selection of the channel 27 for the test |
| 10 | select_c26 | Selection of the channel 26 for the test |
| 11 | select_c25 | Selection of the channel 25 for the test |
| 12 | select_cfpn2 | Selection of the channel cfpn2 for the test |
| 13 | select_c24 | Selection of the channel 24 for the test |
| 14 | select_c23 | Selection of the channel 23 for the test |
| 15 | select_c22 | Selection of the channel 22 for the test |
| 16 | select_c21 | Selection of the channel 21 for the test |
| 17 | select_c20 | Selection of the channel 20 for the test |
| 18 | select_c19 | Selection of the channel 19 for the test |
| 19 | select_c18 | Selection of the channel 18 for the test |
| 20 | select_c17 | Selection of the channel 17 for the test |
| 21 | select_c16 | Selection of the channel 16 for the test |
| 22 | select_c15 | Selection of the channel 15 for the test |
| 23 | select_c14 | Selection of the channel 14 for the test |
| 24 | select_c13 | Selection of the channel 13 for the test |
| 25 | select_cfpn1 | Selection of the channel cfpn1 for the test |
| 26 | select_c12 | Selection of the channel 12 for the test |
| 27 | select_c11 | Selection of the channel 11 for the test |
| 28 | select_c10 | Selection of the channel 10 for the test |
| 29 | select_c9 | Selection of the channel 9 for the test |
| 30 | select_c8 | Selection of the channel 8 for the test |
| 31 | select_c7 | Selection of the channel 7 for the test |
| 32 | select_c6 | Selection of the channel 6 for the test |
| 33 | select_c5 | Selection of the channel 5 for the test |
| 34 | select_c4 | Selection of the channel 4 for the test |
| 35 | select_c3 | Selection of the channel 3 for the test |
| 36 | select_c2 | Selection of the channel 2 for the test |
| 37 | select_c1 | Selection of the channel 1 for the test |
|  |  |  |

Table 15: Description of the register 3.

### 6.8.D Injection Register 4

This 38 bits register is located at address number 4. It is used to select the channel for the test (Table 16). The channel number goes from 37 to 72 , and 3 to 4 for the FPN channel.

| bit | name | action |
| :---: | :--- | :--- |
| 0 | select_c37 | Selection of the channel 37 for the test |
| 1 | select_c38 | Selection of the channel 38 for the test |
| 2 | select_c39 | Selection of the channel 39 for the test |
| 3 | select_c40 | Selection of the channel 40 for the test |
| 4 | select_c41 | Selection of the channel 41 for the test |
| 5 | select_c42 | Selection of the channel 42 for the test |
| 6 | select_c43 | Selection of the channel 43 for the test |
| 7 | select_c44 | Selection of the channel 44 for the test |
| 8 | select_c45 | Selection of the channel 45 for the test |
| 9 | select_c46 | Selection of the channel 46 for the test |
| 10 | select_c47 | Selection of the channel 47 for the test |
| 11 | select_c48 | Selection of the channel 48 for the test |
| 12 | select_cfpn3 | Selection of the channel cfpn3 for the test |
| 13 | select_c49 | Selection of the channel 49 for the test |
| 14 | select_c50 | Selection of the channel 50 for the test |
| 15 | select_c51 | Selection of the channel 51 for the test |
| 16 | select_c52 | Selection of the channel 52 for the test |
| 17 | select_c53 | Selection of the channel 53 for the test |
| 18 | select_c54 | Selection of the channel 54 for the test |
| 19 | select_c55 | Selection of the channel 55 for the test |
| 20 | select_c56 | Selection of the channel 56 for the test |
| 21 | select_c57 | Selection of the channel 57 for the test |
| 22 | select_c58 | Selection of the channel 58 for the test |
| 23 | select_c59 | Selection of the channel 59 for the test |
| 24 | select_c60 | Selection of the channel 60 for the test |
| 25 | select_cfpn4 | Selection of the channel cfpn4 for the test |
| 26 | select_c61 | Selection of the channel 61 for the test |
| 27 | select_c62 | Selection of the channel 62 for the test |
| 28 | select_c63 | Selection of the channel 63 for the test |
| 29 | select_c64 | Selection of the channel 64 for the test |
| 30 | select_c65 | Selection of the channel 65 for the test |
| 31 | select_c66 | Selection of the channel 66 for the test |
| 32 | select_c67 | Selection of the channel 67 for the test |
| 33 | select_c68 | Selection of the channel 68 for the test |
| 34 | select_c69 | Selection of the channel 69 for the test |
| 35 | select_c70 | Selection of the channel 70 for the test |
| 36 | select_c71 | Selection of the channel 71 for the test |
| 37 | select_c72 | Selection of the channel 72 for the test |
|  |  |  |
| 10 |  |  |

Table 16: Description of the register 4.

## 7 Power supply connections.

A significant number of pins of the AFTER chip (27 VDD +30 GND) are dedicated to power supplies. The analog channels of AFTER are split into 2 groups of 38 , for matching a square package. The height of these 2 groups ( 7 mm ) and the sensitivity of each block (CSA, CR, SK \& G-2) imply to supply these blocks independently and homogeneous (Pins in top and bottom). This is also true for the SCA powering. The Fig 15 shows the internal architecture of the chip by indicating the placement and the name of the various building blocks.


Fig 15: Internal architecture of AFTER.

### 7.1 Cavity/leadframe connection.

The substrat ( P type) must be connected to the ground. This is done by connecting the bottom of the cavity with 4 pins (Fig 16).


Fig 16: Bonding diagram of AFTER.

| $\boldsymbol{N}^{\circ}$ Pin | Name | $\boldsymbol{I} \boldsymbol{d c}$ | Description |
| :--- | :--- | :--- | :--- |
| $\mathbf{4 1}$ | Gnd_Substrat | 0A | Protection diode [37 to 84],cavity, SCA digital part guard ring \& Slow Control |
| $\mathbf{8 0}$ | Gnd_Substrat | 0A | Cavity |
| $\mathbf{1 2 1}$ | Gnd_Substrat | OA | Cavity |
| $\mathbf{1 6 0}$ | Gnd_Substrat | 0A | Cavity |

Table 17: Pins for the cavity connection.
The pin 41 is also used for:

- protection diodes of pins 37 to 84 ,
- guard ring of the digital part of the SCA,
- Slow Control.


### 7.2 Protection diodes bias

All the pins of the chip are protected by internal diodes. The power supplies of these diodes are carried out by independent pins, not used for the supply of internal blocks (except $\mathrm{N}^{\circ} 55$ ).

| $\boldsymbol{N}^{\circ} \boldsymbol{P i n}$ | Name | $\boldsymbol{I} \boldsymbol{d c}$ | Description |
| :--- | :--- | :--- | :--- |
| $\mathbf{5 5}$ | Vdd_prob | 0A | Vdd for protection diode [37 to 84], SCA digital part guard ring \& Slow Control |
| $\mathbf{4 1}$ | Gnd_prob | 0A | Gnd for protection diode [37 to 84], SCA digital part guard ring \& Slow Control |
| $\mathbf{1 2 3}$ | Vdd_proind | 0A | Vdd for protection diode [37 to 72]:channels input |
| $\mathbf{1 2 2}$ | Gnd_proind | 0A | Gnd for protection diode [37 to 72]:channels input |
| $\mathbf{1 4 0}$ | Vdd_proh | 0A | Vdd for protection diode 124 to 157] |
| $\mathbf{1 4 1}$ | Gnd_proh | 0A | Gnd for protection diode 124 to 157] |
| $\mathbf{1 5 8}$ | Vdd_proing | 0A | Vdd for protection diode [1 to 36]:channels input |
| $\mathbf{1 5 9}$ | Gnd_proing | 0A | Gnd for protection diode [1 to 36]:channels input |

Table 18: Pins for the protection diodes bias.

### 7.3 Analog channels bias.

The front-end part of the analog channel is made of 4 blocks:

- CSA (Table 19),
- PZC block (Table 20),
- SK filter (Table 21),
- Gain -2 (Table 22).

Each of them uses dedicated pins for power supplies:

### 7.3.A CSA

| $N^{\circ}$ Pin | Name | $I d c(m A)$ | Description |
| :---: | :---: | :---: | :---: |
| 37 | Vdd_csag | $2.43+$ Ipol_csag $*\left[1+18 *\left(1+\mathrm{R}_{1} \mathrm{~b}_{0}\right)\right.$ ] | Vdd\&Gnd for the CSA of the channel 36 to 1 |
| 38 | Gnd_csag | $2.43+$ Ipol_csag $*\left[1+18 *\left(1+\mathrm{R}_{1} \mathrm{~b}_{0}\right)\right]$ |  |
| 157 | Vdd_csag | 2.43 + Ipol_csag $*\left[1+18 *\left(1+\mathrm{R}_{1} \mathrm{~b}_{0}\right)\right]$ |  |
| 156 | Gnd_csag | 2.43 + Ipol_csag $*\left[1+18 *\left(1+\mathrm{R}_{1} \mathrm{~b}_{0}\right)\right]$ |  |
| 84 | Vdd_csad | 2.43 + Ipol_csad*[1 + 18* $\left.\left(1+\mathrm{R}_{1} \mathrm{~b}_{0}\right)\right]$ | Vdd\&Gnd for the CSA of the channel 37 to 72 |
| 83 | Gnd_csad | 2.43 + Ipol_csad*[1 + 18* $\left.\left(1+\mathrm{R}_{1} \mathrm{~b}_{0}\right)\right]$ |  |
| 124 | Vdd_csad | 2.43 + Ipol_csad*[1 + 18* $\left.\left(1+\mathrm{R}_{1} \mathrm{~b}_{0}\right)\right]$ |  |
| 125 | Gnd_csad | 2.43 + Ipol_csad*[1+18*(1+R $\left.\left.\mathrm{R}_{1} \mathrm{~b}_{0}\right)\right]$ |  |

Table 19: CSA power supplies.
The d.c power consumption current depends on 2 parameters:

- The value of CSA nominal bias current set externally on the FEC by resistors connected to the pins lpol_csag ( $\mathrm{N}^{\circ} 155$ ) / Ipol_csad ( $\mathrm{N}^{\circ} 124$ ) :
- The sate of the bit\#0 of the register 1 (see Table 6). If it is 1 : the CSA bias current is doubled, if it is 0 , the nominal bias current is used


### 7.3.B Pole-zero Stage.

| $\begin{aligned} & N^{\circ} \\ & \text { Pin } \end{aligned}$ | Name | $I d c$ | I dc (power down) | Description |
| :---: | :---: | :---: | :---: | :---: |
| 42 | Vdd_crg | 3.9 mA | 1.1 mA | Vdd\&Gnd for the PZC of the channel 36 to 1 |
| 43 | Gnd_crg | 3.9 mA | 1.1 mA |  |
| 154 | Vdd_crg | 3.9 mA | 1.1 mA |  |
| 153 | Gnd_crg | 3.9 mA | 1.1 mA |  |
| 82 | Vdd_crd | 3.9 mA | 1.1 mA | Vdd\&Gnd for the PZC of the channel 37 to 72 |
| 81 | Gnd_crd | 3.9 mA | 1.1 mA |  |
| 127 | Vdd_crd | 3.9 mA | 1.1 mA |  |
| 128 | Gnd_crd | 3.9 mA | 1.1 mA |  |

Table 20: PZ supply power supplies.

### 7.3.C SK filter

| $\begin{aligned} & N^{\circ} \\ & \text { Pin } \end{aligned}$ | Name | $I d c$ | I dc (power down) | Description |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| 45 | Vdd_skg | 1.9 mA | 740 uA | Vdd\&Gnd for the SK of the channel 36 to 1 |
| 44 | Gnd_skg | 1.9 mA | 740uA |  |
| 152 | Vdd_skg | 1.9 mA | 740uA |  |
| 151 | Gnd_skg | 1.9 mA | 740uA |  |
| 79 | Vdd_skd | 1.9 mA | 740uA | Vdd\&Gnd for the SK of the channel 37 to 72 |
| 78 | Gnd_skd | 1.9 mA | 740uA |  |
| 129 | Vdd_skd | 1.9 mA | 740uA |  |
| 130 | Gnd_skd | 1.9 mA | 740uA |  |

Table 21: SK filter power supplies

### 7.3.D x2 Gain

| $\begin{aligned} & N^{\circ} \\ & \text { Pin } \end{aligned}$ | Name | $I d c$ | I dc (power down) | Description |
| :---: | :---: | :---: | :---: | :---: |
| 47 | Vdd_g2g | 6.881 mA | 1.73 mA | Vdd\&Gnd for the Gain-2 of the channel 36 to $1+$ 2 FPN |
| 48 | Gnd_g2g | 6.881 mA | 1.73 mA |  |
| 150 | Vdd_g2g | 6.881 mA | 1.73 mA |  |
| 149 | Gnd_g2g | 6.881 mA | 1.73 mA |  |
| 77 | Vdd_g2d | 6.881 mA | 1.73 mA | Vdd\&Gnd for the Gain-2 of the channel 37 to 72 +2 FPN |
| 76 | Gnd_g2d | 6.881 mA | 1.73 mA |  |
| 131 | Vdd_g2d | 6.881 mA | 1.73 mA |  |
| 132 | Gnd_g2d | 6.881 mA | 1.73 mA |  |

Table 22:2x Gain power supplies.

### 7.4 SCA power supplies

The SCA is divided into 4 parts:

- The matrix [511*76 analog cells],
- The input stage "return buffers" [1 per line] (Table 23),
- The SCA read amplifiers [1 per line] (Table 24),
- The digital part [clock, address ...] (Table 25).


### 7.4.A The analog memory cell matrix

The supply of the matrix is made by a metal grid on its entire surface. This grid is connected to the power bus supply of the return buffer and of the output. The D.C power consumption of this part is zero.

### 7.4.B The «return buffer» amplifiers.

This stage buffers the $\mathrm{V}_{\text {return }}$ voltage, defined outside by the pad 142 (Vref_scag), to provide it as a reference to the memory cells.

| $N^{\circ}$ Pin | Name | $\boldsymbol{I} d \boldsymbol{c}$ | Description |
| :--- | :--- | :--- | :--- |
| $\mathbf{5 0}$ | Vdd | 3.676 mA | Vdd\&Gnd for the "buffer return" \& Matrix |
| $\mathbf{4 9}$ | Gnd | 3.676 mA |  |
| $\mathbf{1 4 4}$ | Vdd | 3.676 mA |  |
| $\mathbf{1 4 5}$ | Gnd | 3.676 mA |  |

Table 23: Power supplies of the «return buffer».

### 7.4.C The SCA read amplifiers

This amplifier is used to read back the analog data stored in the memory cells. It is active only during the read phase. Its power consumption value is adjustable by slow control.

| $N^{\circ}$ Pin | Name | $I d c$ | Description |
| :---: | :---: | :---: | :---: |
| 66 | Vdd | 6.62 mA | Vdd\&Gnd for the SCA readout Amplifier \& Matrix (configuration: Cur_RA<1>: "1"; Cur_RA<0>:" 0 " and Power_down_write: "0") (nominal config) |
| 67 | Gnd | 6.62 mA |  |
| 136 | Vdd | 6.62 mA |  |
| 137 | Gnd | 6.62 mA |  |

Table 24: Power supplies of SCA line buffer.

### 7.4.D Digital part

This part generates and distributes the signals required for the writing \& reading operations in the SCA. Its DC power consumption is 0 , excepted for the LVDS input buffers.

| $\boldsymbol{N}^{\circ}$ Pin | Name | I dc |  |
| :--- | :--- | :--- | :--- |
| $\mathbf{6 2}$ | Vdd | 343.3 uA | Vdd\&Gnd for the LVDS receivers \& CSA write clock block |
| 63 | Gnd | 343.3 uA |  |
| 65 | Vdd | 0 mA | Vdd\&Gnd for the CSA logic part |
| 64 | Gnd | OmA |  |

Table 25: Power supplies of the digital part.

### 7.5 Output multiplexer and output buffer.

This section of the chip includes the analog output multiplexer and the differential output buffer.

| $\boldsymbol{N}^{\circ}$ Pin | Name | I dc | Description |
| :--- | :--- | :--- | :--- |
| $\mathbf{7 2}$ | Vdd_out | 16.03 mA <br> $(15 \mathrm{~mA}$ from differential output buffer) |  <br> SCA group buffers <br> (configuration: Vgg1=2mA\&Vgg7=1mA) |
| $\mathbf{7 5}$ | Gnd | 16.03 mA <br> $(15 \mathrm{~mA}$ from differential output buffer) |  |

Table 26: Power supplies of the output buffers.

## 8 The D.C voltage and current references

### 8.1 The D.C voltage references

Some DC reference voltages used in the AFTER chip have to be defined externally. These voltages can be adapted to the signal polarity in order to maximize the chip dynamic range.
These voltages are:

- The CSA DC output voltage,
- The PZ \& SK filter DC output voltages,
- The $\times 2$ Gain DC output voltage,
- The Gain-2 \& SCA DC reference voltages,
- The differential output buffer DC input \& output voltages.

Excepted for the reference voltage defining the input common mode voltage of the output buffer, the input pads associated to these reference have high DC input impedance ( $>10 \mathrm{Mohm}$ ). Therefore, the reference voltages, defined on the FEC, could be derived from the power supply by low power consumption resistor bridges as shown in the Fig 17. For high frequency noise reduction, the voltage references must be bypassed to ground by 100 nF ceramic capacitors.


Fig 17: Example of an external reference voltage.

### 8.1.A CSA DC output voltage.

| $N^{\circ}$ Pin | Name | Vdc | I dc | Description |
| :--- | :--- | :--- | :--- | :--- |
| 133 | Vdc_csad | $2 V(+/-2 \%)$ | $0 m A$ | d.c output level voltage of the CSA [37 to 72] |
| 148 | Vdc_csag | $2 V(+/-2 \%)$ | $0 m A$ | d.c output level voltage of the CSA [36 to 1] |

Table 27: Pins setting the CSA DC output voltages.

### 8.1.B PZ \& SK filter DC output voltages.

| $N^{\circ}$ Pin | Name | Vdc | I dc | Description |
| :--- | :---: | :---: | :---: | :--- |
| 134 | Vdc_cd | $2.2 V(+/-2 \%)$ | $0 m A$ | d.c output level voltage of the PZC \& SK filter [37 to 72] |
| 147 | Vdc_cg | $2.2 V(+-2 \%)$ | $0 m A$ | d.c output level voltage of the PZC \& SK filter [36 to 1] |

Table 28: Pins setting the PZ \& SK filters DC output voltages.
The AFTER chip is able to treat anode (TPC of T2K) or cathode polarity signals. To maximize the analog chain dynamic range, different reference voltages will be used depending on the signal polarity:

- 2.2 V for the anode polarity.
- $\quad 0.7 \mathrm{~V}$ for the cathode polarity.


### 8.1.C x2-Gain DC output voltage.

| $N^{\circ}$ Pin | Name | Vdc | I dc | Description |
| :---: | :---: | :---: | :---: | :---: |
| 135 | Vdc_g2d | $0.7 V(+/-2 \%)$ | $0 m A$ | d.c output level voltage of the Gain-2 [37 to 72] |
| 146 | Vdc_g2g | $0.7 V(+/-2 \%)$ | $0 m A$ | d.c output level voltage of the Gain-2 [36 to 1] |

Table 29: Pins setting the x2 Gain stage DC output voltage.
The optimum voltage is:

- $\quad 0.7 \mathrm{~V}$ for the anode polarity.
- 2.2 V for the cathode polarity.


### 8.1.D Reference voltages of the $\mathbf{x} 2$ Gain and the SCA

| $N^{\circ}$ Pin | Name | Vdc | $I d c$ | Description |
| :--- | :---: | :---: | :---: | :--- |
| 138 | Vref_scad | $0.7 V(+/-2 \%)$ | $0 m A$ | d.c input level voltage of the Gain-2 [37 to 72] \& reference <br> voltage of the memory cells (Vreturn) |
| 142 | Vref_scag | $0.7 V(+/-2 \%)$ | $0 m A$ | d.c input level voltage of the Gain-2 [36 to 1] \& reference <br> voltage of the memory cells (Vreturn) |

Table 30: x2 Gain stage \& SCA reference voltages.
The absolute value of these voltages is not critical. But they must be larger than 0.6 V and smaller than 1.5 V . The two voltages must be equal.

### 8.1.E DC input common mode voltage of the differential output buffer

| $N^{\circ}$ Pin | Name | Vdc | I dc | Description |
| :--- | :--- | :---: | :---: | :---: |
| 71 | Vicm | $1.45 \mathrm{~V}(+/-2 \%)$ | [Vop - Vicm]/11.638K $\Omega$ | Input Common mode voltage for readout buffer |

Table 31: DC input common mode voltage of the differential output buffer.
Unlike the other reference voltages, and because it drives a quite low impedance node, the voltage source providing this voltage must be able to sink or source a current in a range of $-26 u A$ to +60 uA . Moreover, its impedance should be smaller than few $10 \Omega$ to avoid non-linearity.

### 8.1.F Common mode output voltage of the output buffer

| $N^{\circ}$ Pin | Name | Vdc | Idc | Description |
| :--- | :---: | :---: | :---: | :--- |
| 68 | Vocm | VddADC/2 | OmA | Output common mode voltage of the readout buffer |

Table 32: common mode output voltage of the differential output buffer.

### 8.2 The D.C current references.

Some bias currents used by the AFTER chip must be defined externally on the FEC. This is the case for those of:

- the CSA input transistor,
- the input \& output stages of the output buffer.

All these currents can be defined using resistor connected between the bias pad and the ground like on Fig 18. Inside the chip, a PMOS transistor, with source connected to vdd and with the gate and the drain connected to the pad is defining the bias current. For optimum noise performances, the pad voltage should be bypassed to the vdd used to supply the block biased by the reference.


Fig 18: Principle of external bias current reference.

### 8.2.A Input transistor bias current of the CSA

| $N^{\circ}$ Pin | Name | I dc | Description |
| :--- | :--- | :--- | :--- |
| 126 | Ipol_csad | note | Current supply of the CSA input transistor [37 to 72] |
| 155 | Ipol_csag | note | Current supply of the CSA input transistor [36 to 1] |

Table 33: Pins for reference current of the CSA.
This current value can be tuned to optimize the noise. The tuning range extends from 200uA to 1 mA . A $\boldsymbol{R}_{\text {ext }}$ resistor of 5.1 K set the bias current of the CSA to $400 \mu \mathrm{~A}$ (or $800 \mu \mathrm{~A}$ if the slow control bit doubling this current is set).
8.2.B Input \& output stage bias currents of the output buffer.

| $N^{\circ}$ <br> Pin | Name | I dc | resistor to gnd <br> nominal value | Description |
| :--- | :--- | :--- | :---: | :--- |
| 69 | Vgg1 | $2 m A$ | 1.24 K | Current bias of the input stage of the Readout buffer |
| 70 | Vgg7 | $1 m A$ | $2 K$ | Current bias of the output stage of the Readout buffer |

Table 34: Pins setting the input \& output bias currents of the output buffer.
These values are the best one to optimize the buffer settling time when loaded by the ADC.

## 9 AFTER Chip main simulated characteristics

This chapter reports the main expected performances of the first version of the AFTER asic. All these data, obtained by simulation, are giving references to be compared with measurements.

### 9.1 The power consumption.

The power consumption is a key parameter for the detector temperature control. In the normal mode of operation, the total power is around: $5 \mathrm{~mW}+$ $3.3 \times I_{\text {polcsa }}$. Depending on the value of $I_{\text {polcsa }}$, the power dissipation will be comprised between 5.66 mW and 8.3 mW .

This power dissipation can be slightly reduced by using the alternated power down mode. If this mode is selected, the SCA readout amplifier power consumption is decreased during the write operation whereas a large part of the analog channel power consumption (PZC, SK filter and $2 \times$ Gain -2 ) is decreased during the reading phase. In this case, the power dissipation will be comprised between 4.46 mW and 7.1 mW .

### 9.2 The chip transfer function.

The AFTER chip transfer function can be expressed as:

$$
\begin{equation*}
F D T=F_{C S A} \cdot \text { Gchain } \tag{1}
\end{equation*}
$$

Where:

- $\quad F_{C S A}$ is the transfer function of the CSA (CSA output voltage divided by input charge).
- $\quad G_{\text {chain }}$ is the voltage gain of the whole analog chain from the CSA output to the chip output.
$\mathrm{F}_{\text {CSA }}$ is depending on the chip range, on the detector capacitance and on the CSA bias current (as the CSA open loop gain value is finite). $\mathrm{G}_{\text {chain }}$ is nearly constant
but is slightly depending on the peaking time, but also on the detector capacitance and on the CSA bias current, especially for the fastest peaking times.

The simulated transfer functions for different conditions are plotted on Fig 19 to
Fig 22.


Fig 19: 600fC range: simulated transfer function vs detector capacitance for various peaking times and CSA bias current.


Fig 20: 360fC range: simulated transfer function vs detector capacitance for various peaking times and CSA bias current.


Fig 21: 240fC range: simulated transfer function vs detector capacitance for various peaking times and CSA bias current.


Fig 22: 120fC range: simulated transfer function vs detector capacitance for various peaking times and CSA bias current.

### 9.3 The Signal over noise ratio.

### 9.3.A Noise.

The equivalent noise charge can be calculated as:

$$
\begin{equation*}
E N C_{A F T E R}^{2}=E N C_{C S A}^{2}+\frac{v_{n-2 \text { ndstages }}^{2}}{F_{C S A}^{2} \cdot \text { Gchain }^{2}} \tag{2}
\end{equation*}
$$

where:

- $\quad E N C_{C S A}$ is the CSA contribution to the ENC
- $\quad V_{n \_2 n d s t a g e s ~}$ is the rms noise voltage measured at the chip output corresponding to the noise contribution of all the blocks excepted the CSA.
(3) $E N C_{A F T E R}^{2}=E N C_{C S A s e r i e}^{2}+E N C_{C S A f}^{2}+E N C_{C S A / I}{ }^{2}+\frac{v_{n_{-2}}^{2} \cdot{ }^{2} \text { _Gstages }}{F_{C S A .120}^{2} \cdot \text { Gchain }^{2}} \cdot$ Range $_{\text {CSA }}^{2}$ where:
- $E N C_{C S A s e r i e}, E N C_{C S A 1 / f}$, and $E N C_{C S A / /}$, are respectively the serie, $1 / \mathrm{f}$, and parallel, contributions to the ENC.
- $F_{C S A 120}$ is the transfer function of the CSA in the 120fC range.
- Range ${ }_{C S A}$ is the "range ratio" of the CSA (1 for 120fC range, 2 for 240fC range, 3 for 360fC range, 5 for 600fC range).
 where:
- $\quad \beta$ is a constant for parallel noise (depending on the CSA feedback and on the detector anod bias resistor).
- $\quad \gamma$ is a constant for $1 / \mathrm{f}$ noise (depending on the CSA input transistor, and at first order non dependant on the CSA bias current).
- $\boldsymbol{\alpha}$ is for the serie noise contribution. It is mainly depending on the CSA input transistor and it is varying as $\left(I_{P O L C S A}\right)^{-A}$. Where $I_{\text {CSA }}$ is the CSA input transistor bias current and A is a coefficient in the range of 0.25 to 0.5 depending on the inversion level of the input transistor.
- $\boldsymbol{C}_{0}$ is chip input capacitor (including the capacitors of the input device, of the internal protection network and of the package).
- Cin is the capacitor connected externally to the chip (including those of the detector, of the external protection network, of the connectors, of the package and of parasitic elements).

For the detector capacitor and shaping time ranges of our applications, the parallel noise contribution is supposed to be negligible. Therefore, the noise will be mainly due to 3 contributions:

- The serie one, which will be the highest for short shaping times and large input capacitors. It can be decreased by increasing Ipolcsa.
- The $1 / f$ noise which scales as the input capacitor, but is independent on the shaping time. It will probably be not negligible for large input capacitors and slow shaping.
- The " 2 nd stage" contribution, independent of the shaping, but that increases for the largest ranges. It will dominates in the following cases:
§ Largest charge ranges.
§ Slow shaping times with relatively small input capacitors. In these cases the noise will be nearly independent of the shaping time.

The $\mathrm{v}_{\mathrm{n} \_2 \text { 2ndstages }}$ contribution is the quadratic sum of the several terms which are listed there together with their rms simulated contributions taken at the chip output (in mV and ADCU):

- $\mathbf{V}_{\text {ADC }} \quad=\mathbf{1 9 5} \boldsymbol{\mu V} \mathbf{~ r m s}(0.4 \mathrm{ADCu})$ : ADC noise (from the datasheet)
- $\mathbf{V}_{\text {dif }} \quad=\mathbf{2 4 0} \boldsymbol{\mu V} \mathbf{r m s}$ ( 0.5 ADCu ) : differential output buffer contribution.
- $\mathbf{V}_{\text {mux }} \quad=\mathbf{1 3 6} \boldsymbol{\mu} \mathbf{V} \mathbf{r m s}$ ( 0.28 ADCu ): multiplexer contribution.
- $\quad \mathbf{V}_{\text {scaread }}=\mathbf{1 7 6} \boldsymbol{\mu} \mathbf{V} \mathbf{~ r m s}$ ( 0.36 ADCu$)$ : total contribution for read operation in the SCA (see 9.3.B).
- $\mathrm{V}_{\text {SCAFPN }}=537 \boldsymbol{\mu \mathrm { V }} \mathbf{~ r m s}$ (1.1 ADCu): contribution of the SCA Fixed pattern noise (from measurement).
- $\mathrm{V}_{\text {x2BuF }}=\mathbf{4 4 0} \boldsymbol{\mu} \mathrm{V}$ rms (0.9 ADCu): contribution of the x2 Buffer and return buffer contributions.
- $\mathrm{V}_{\text {Filters }}=\mathbf{7 8 0} \boldsymbol{\mu \mathrm { V } \mathbf { ~ r m s }}$ (1.6 ADCu): contribution of the filters (Sallen-Key + Pole-zero).

Thus:

- The simulated total $2^{\text {nd }}$ stage contribution is 1.1 mV rms (2.27 ADCu) ( $780 \mu \mathrm{~V} / 1.6 \mathrm{ADCu}$ without the fixed pattern noise).
- The simulated noise of the mulitplexer, the output buffer and the ADC , measurable during the "reset phase" of the readout is $337.8 \mu \mathrm{~V} \mathbf{~ r m s} \mathbf{( 0 . 7}$ ADCu).
- The simulated noise for a "FPN" channel is $582 \mu \mathrm{~V}$ rms (1.2ADCU) and becomes $791 \mu \mathrm{~V}$ rms if the fixed pattern noise contribution is included (1.62 ADCu).
To calculate the ENC due to these contributions, they should be renormalized by the transfer function of the chain $\left(\frac{\text { Range }_{C S A}}{F_{C S A .120} \cdot \text { Gchain }}\right.$ in equation (4)). Table 35 summarizes the mean transfer function for the 4 ranges (that actually are depending (+/-10\%) on the peaking time, the CSA input current and the detector capacitor).

| Chip Range | Transfer function <br> $(\mathrm{mV/ke})$ | Total second stage noise <br> contribution to ENC (e-rms) <br> including fixed pattern noise | Total second stage noise <br> contribution to ENC (e-rms) <br> without fixed pattern noise |
| :---: | :---: | :---: | :---: |
| 120 | 2.9 | 380 | 272 |
| 240 | 1.5 | 724 | 517 |
| 360 | 1 | 1078 | 771 |
| 600 | 0.6 | 1785 | 1275 |

Table 35: Transfer function and $2^{\text {nd }}$ stage contribution for the 4 ranges.

The parameters of (4) have been fitted from simulations results and are summarized in Table 36.

| Parameter <br> Name | Value | Unit | Comment |
| :---: | :---: | :---: | :---: |
| $\alpha(400 \mu \mathrm{~A})$ | 238.4 | $e-. n s^{1 / 2} . p F^{-1}$ | scales as $I^{1 / 2}$ |
| $\alpha(800 \mu \mathrm{~A})$ | 176.3 | $e-. n s^{1 / 2} . p F^{-1}$ |  |
| $\gamma$ | 3.6 | $e-. p F^{-1}$ | independent of ICSA |
| $\beta$ | 0 | $e-. n s^{-1 / 2} . p F^{-1}$ | // noise negligible |
| $C_{0}$ | 7 | $p$ F |  |
| $\frac{v_{n_{-} 2 \text { ndstages }}}{F_{C S A .120} \cdot \text { Gchain }}$ | 370 | $e$ - |  |

Table 36: Equation (3) parameters extracted from fit on simulated data.

Fig 23 shows the comparison between the simulated $\operatorname{ENC}\left(\mathrm{C}_{\mathrm{IN}_{N}}, \mathrm{t}_{\mathrm{p}}\right)$ characteristics (dots) and the fitted data (lines) from (4) in the 120 fC case for $800 \mu \mathrm{~A}$ and $400 \mu \mathrm{~A}$ CSA bias currents, proving that the validity of (4) parameterization.


Fig 23: Simulated (dots) and parameterized (lines) ENC(Cin) in the 120fC range for ICSA= $800 \mu \mathrm{~A}$ (top) and ICSA $=400 \mu \mathrm{~A}$.

### 9.3.B The Fixed pattern noise.

A S.C.A. channel is made of a row of storage capacitors addressed by MOS switches. It is well known that there is an offset spread between the capacitors of the same line: the offset of each capacitor is depending on its index. The rms value of the spread of the mean baseline measured on each cell of the S.C.A. channel is called the fixed pattern noise (FPN). The FPN is mainly due to switching charge injection spread and to the spread in the sampling of parasitic signals propagating in the substrate or power supplies. Very often, the fixed pattern noise pattern is very similar from channel to channel.

In standard mode of operation, the read operation can start at any cell of the S.C.A., so that the fixed pattern noise is randomized and will appear as a noise (with a very large coherent part between channels).

Nevertheless, as the fixed pattern noise is often very reproducible, it can be subtracted from output data. Several solutions are possible:

- The index of the last read cell is sent at the end of the readout phase. So that it is possible to subtract for each read sample of each channel a cell dependent offset (calibrated before).
- The same procedure can be used but with subtracting for each cell of all the channels (or eventually of a group) the same value.
- For each read cell, the mean value of the FPN channel data can be subtracted to the raw channel data.
- For each read cell, the mean value of the data of the non-hit channels can be subtracted to the raw channel data.

The first solution is the more accurate but requires more hardware or software resources. The 3 other ones can add some coherent noise between channels

### 9.3.C MIP/noise ratio.

The plots of Fig 24 show simulation results for the signal over noise ratio for MIP signal as a function of shaping times and CSA bias current. The different plots are corresponding to the various charge range and for two input capacitor values ( 15 pF and 30 pF ) calculated as (Charge of MIP / ENC). For each range, the "MIP" signal is a signal corresponding to $1 / 10$ of the full range delivered within 20 ns (equivalent to a dirac for AFTER). The MIP charges are therefore:

```
-120fC : 75 000 e-
-240fC : 150 000 e-
-360fC : 225 000 e-
-600fC : 450 000 e-
```

MIP/noise: 120 fC range \& $\mathrm{Cin}=15 \mathrm{pF}$


MIP/noise: 120 fC range \& $\mathrm{Cin}=30 \mathrm{pF}$
 Peaking Time (ns)

MIP/noise: 240fC range \& Cin=15pF


MIP/noise: 240fC range \& Cin=30pF


MIP/noise: 360 fC range \& $\mathrm{Cin}=15 \mathrm{pF}$


MIP/noise: 360fC range \& $\mathrm{Cin}=30 \mathrm{pF}$


MIP/noise: 600fC range \& $\mathrm{Cin}=15 \mathrm{pF}$



Fig 24: MIP to noise ration versus peaking time for different ranges and input capacitors.

On Fig 24, we can see that for the 240fC, 360fC \& 600fC ranges, the MIP/noise ratio is significantly higher than the specified value of 100 . For the 120fC range, the specification can be only reached by increasing the CSA input transistor current and by using shaping with peaking times larger or equal to 200ns.

### 9.4 Signal shape.

The SCA write frequency will be adapted in order to match the SCA time range with the maximum drift time in the TPC: $F_{\text {write }}=1 /(511 \times$ Vdrift/Ldrift). The peaking time of the filter will be adapted to match both the detector signal and the SCA write frequency to keep enough samples for charge and time measurement.

The filter integrated in AFTER is a CR-RC ${ }^{2}$ with two complex poles providing a quasi semi-gaussian shape with less than $1 \%$ undershoot. The simulated timing parameters of the shaped signal are reported in Table 37.


Fig 25: Definition of the shaped signal timing parameters.

| Tp (5\%_100\%) | Tf (100\%_5\%) | twhm | $\operatorname{tr}_{50}$ | $t f_{50}$ |
| :---: | :---: | :---: | :---: | :---: |
| 116.7 ns | 202.5ns | 158.4ns | 67.59ns | 90.82ns |
| 200ns | 438.2 ns | 311.6ns | 121.3ns | 190.3ns |
| 505ns | 1194ns | 843ns | 329.2ns | 513.7ns |
| 993ns | 2351ns | 1689ns | 656.1ns | 1033ns |
| 1912ns | 4283ns | 3213ns | 1268ns | 1945ns |

Table 37: Time occupancy parameters of the filtered signal.

## 10 AFTER chip Pinout.

The AFTER chip is packaged in a 160-pin Low Quad Flat Pack (LQFP-160). The package body dimensions are $28 \times 28 \times 1.4 \mathrm{~mm}$. Its pitch is 0.65 mm with a 2 mm footprint. The analog inputs are divided into two groups of 36 located each on one side of the package. This arrangement has been chosen to avoid fine pitch bonding or long and large angles bonding.

The pinout of the AFTER chip is given in the Fig 26 and the Table 38.


Fig 26: Pinout of the packaged AFTER chip.

| $N^{\circ}$ Pin | Name | Dir. | Level | Description |
| :---: | :---: | :---: | :---: | :---: |
| 1 to 36 | In<36> to $\mathrm{In}<1>$ | In | Analog | Inputs of channels 36 to 1 |
| 37 | Vdd_csag | In | 3.3 V | Vdd for the csa of the channels 36 to 1 |
| 38 | gnd | In | 0V | Gnd for the csa of the channels 36 to 1 |
| 39 | In_cal | In | Analog | Input for the calibration |
| 40 | In_testfonc | In | Analog | Input for the test \& functionality |
| 41 | gnd | In | 0V | Gnd for protection diode [37 to 84]., cavity , SCA digital part guard ring \& Slow Control |
| 42 | Vdd_crg | In | 3.3 V | Vdd for the PZC of the channels 36 to 1 |
| 43 | gnd | In | 0V | Gnd for the PZC filter of the channels 36 to 1 |
| 44 | gnd | In | 0V | Gnd for the SK filter of the channels 36 to 1 |
| 45 | Vdd_skg | In | 3.3 V | Vdd for the SK filter of the channels 36 to 1 |
| 46 | Out_debug | Out | Analog | Output of the "spy" mode |
| 47 | Vdd_g2g | In | 3.3 V | Vdd for the Gain -2 of the channels 36 to 1 |
| 48 | gnd | In | 0V | Gnd for the Gain -2 of the channels 36 to 1 |
| 49 | gnd | In | 0V | Gnd return buffer + Matrix |
| 50 | vdd | In | 3.3 V | Vdd return buffer + Matrix |
| 51 | Sc_din | In | CMOS 3.3V | Serial data input of Slow Control |
| 52 | Sc_en | In | CMOS 3.3V | Chip Select input of Slow Control |
| 53 | Sc_ck | In | CMOS 3.3V | Serial clock input of Slow Control |
| 54 | Sc_dout | Out | CMOS 3.3V | Serial data output of Slow Control |
| 55 | Vdd_prob | In | 3.3 V | Vdd for protection diode [37 to 84], SCA digital part guard ring \& Slow Control |
| 56 | read | In | CMOS 3.3V | SCA read mode |
| 57 | rckm | In | LVDS | SCA Negative read clock |
| 58 | rckp | In | LVDS | SCA Positive read clock |
| 59 | wckm | In | LVDS | SCA Negative write clock |
| 60 | wckp | In | LVDS | SCA Positive write clock |
| 61 | write | In | CMOS 3.3V | SCA write mode |
| 62 | vdd | In | 3.3 V | Vdd LVDS receiver \& block SCA Write Clock |
| 63 | gnd | In | 0V | Gnd LVDS receiver \& block SCA Write Clock |
| 64 | gnd | In | 0V | Gnd SCA logic |
| 65 | vdd | In | 3.3 V | Vdd SCA logic |
| 66 | vdd | In | 3.3 V | Vdd SCA Readout Amplifier + Matrix |
| 67 | gnd | In | 0V | Gnd SCA Readout Amplifier + Matrix |
| 68 | vocm | In | VddADC/2 | Common mode output voltage of the Readout buffer |
| 69 | Vgg1 | Out | Current 2mA | Current bias of the input stage of Readout buffer |
| 70 | Vgg7 | Out | Current 1mA | Current bias of the output stage of Readout buffer |
| 71 | vicm | In | 1.45 V mean | Common mode input voltage of the Readout buffer |
| 72 | Vdd_out | In | 3.3 V | Vdd of the Readout buffer \& SCA buffer |
| 73 | vop | Out | Analog | Positive output of the Readout buffer |
| 74 | vom | Out | Analog | Negative output of the Readout buffer |
| 75 | gnd | In | 0V | Gnd buffer out + logic |
| 76 | gnd | In | 0V | Gnd for the Gain -2 of the channels 37 to 72 |
| 77 | Vdd_g2d | In | 3.3 V | Vdd for the Gain -2 of the channels 37 to 72 |
| 78 | gnd | In | 0V | Gnd for the SK filter of the channels 37 to 72 |
| 79 | Vdd_skd | In | 3.3 V | Vdd for the SK filter of the channels 37 to 72 |
| 80 | gnd | In | 0V | Gnd for cavity |


| $N^{\circ}$ Pin | Name | Dir. | Level | Description |
| :---: | :---: | :---: | :---: | :---: |
| 81 | gnd | In | 0V | Gnd for the PZC filter of the channels 37 to 72 |
| 82 | Vdd_crd | In | 3.3 V | Vdd for the PZC filter of the channels 37 to 72 |
| 83 | gnd | In | 0V | Gnd for the CSA of the channels 37 to 72 |
| 84 | Vdd_csad | In | 3.3 V | Vdd for the CSA of the channels 37 to 72 |
| 85 to 120 | In<72> to In<37> | In | Analog | Inputs of channels 72 to 37 |
| 121 | gnd | In | 0V | Gnd for cavity |
| 122 | gnd | In | 0V | Gnd for protection diode [37 to 72] |
| 123 | Vdd_proind | In | 3.3 V | Vdd for protection diode [37 to 72] |
| 124 | Vdd_csad | In | 3.3 V | Vdd for the CSA of the channels 37 to 72 |
| 125 | gnd | In | 0V | Gnd for the CSA of the channels 37 to 72 |
| 126 | Ipol_csad | Out | Current | Current supply of the input transistors of CSA [37 to 72] |
| 127 | Vdd_crd | In | 3.3 V | Vdd for the PZC of the channels 37 to 72 |
| 128 | gnd | In | 0V | Gnd for the PZC of the channels 37 to 72 |
| 129 | Vdd_skd | In | 3.3 V | Vdd for the SK filter of the channels 37 to 72 |
| 130 | gnd | In | 0V | Gnd for the SK filter of the channels 37 to 72 |
| 131 | Vdd_g2d | In | 3.3 V | Vdd for the Gain -2 of the channels 37 to 72 |
| 132 | gnd | In | 0V | Gnd for the Gain -2 of the channels 37 to 72 |
| 133 | Vdc_csad | In | 2V typ. | d.c output level voltage of the CSA [37 to 72] |
| 134 | Vdc_cd | In | 2.2 V [0.7V] | d.c output level voltage of the PZC \& SK filter [37 to 72] |
| 135 | Vdc_g2d | In | 0.7V [2.2V] | d.c output level voltage of the Gain -2 [37 to 72] |
| 136 | Vdd | In | 3.3 V | Vdd SCA Readout Amplifier + Matrix |
| 137 | gnd | In | 0V | Gnd SCA Readout Amplifier + Matrix |
| 138 | vref_scad | In | 0.7 V | d.c reference level voltage of the SCA |
| 139 | vb_ra | in/out | analog | Current source voltage of the internal readout buffer; Control purpose |
| 140 | vdd_proh | In | 3.3 V | Vdd for protection diode [124 to 157] |
| 141 | gnd | In | 0 V | Gnd for protection diode [124 to 157] |
| 142 | vref_scag | In | 0.7 V | d.c reference level voltage of the SCA |
| 143 | vbf | in/out | analog | Current source voltage of the Matrix return bus |
| 144 | Vdd | In | 3.3 V | Vdd return buffer + Matrix |
| 145 | gnd | In | 0V | Gnd return buffer + Matrix |
| 146 | Vdc_g2g | In | 0.7 V [2.2V] | d.c output level voltage of the Gain -2 [36 to 1] |
| 147 | Vdc_cg | In | 2.2 V [0.7V] | d.c output level voltage of the PZC \& SK filter [36 to 1] |
| 148 | Vdc_csag | In | 2 V typ. | d.c output level voltage of the CSA [36 to 1] |
| 149 | gnd | In | 0V | Gnd for the Gain 2 of the channels 36 to 1 |
| 150 | Vdd_g2g | In | 3.3 V | Vdd for the Gain 2 of the channels 36 to 1 |
| 151 | gnd | In | 0V | Gnd for the SK filter of the channels 36 to 1 |
| 152 | Vdd_skg | In | 3.3 V | Vdd for the SK filter of the channels 36 to 1 |
| 153 | gnd | In | 0 V | Gnd for the PZC of the channels 36 to 1 |
| 154 | Vdd_crg | In | 3.3 V | Vdd for the PZC filter of the channels 36 to 1 |
| 155 | Ipol_csag | in/out | Current | Current supply of the input transistors of CSA [36 to 1] |
| 156 | gnd | In | 0V | Gnd for the CSA of the channels 36 to 1 |
| 157 | Vdd_csag | In | 3.3 V | Vdd for the CSA of the channels 36 to 1 |
| 158 | Vdd_proing | In | 3.3 V | Vdd for protection diode [36 to 1] |
| 159 | gnd | In | 0V | Gnd for protection diode [36 to 1] |
| 160 | gnd | In | 0 V | Gnd for cavity |

Table 38: After pinout description.

## 11 Digital Input/Output Specifications.

The AFTER chip makes use of two kinds of digital input/ouput signals: CMOS and LVDS.
The CMOS signals are unipolar signals whereas "LVDS" signals are differential. The "LVDS" inputs are compatible with LVDS levels but also with other differential standard (like PECL). For LVDS signals, the suffix " $p$ " is for the positive signal phase and " $m$ " for the negative one. The digital signal is defined as the difference between the positive and negative phases.

| Nom | Description | Min | Typ. | Max |
| :--- | :--- | :---: | :---: | :---: |
| VDD | Power supply voltage | 3.2 V | 3.3 V | 3.4 V |
| Vcmm LVDSSin | Mode commun LVDS en entrée | 0.6 V | 1.2 V | VDD-0.3V |
| Vswing <br> LVDSin | input swing for LVDS inputs | 0.2 V | 0.4 V | $3.3 \mathrm{~V}(1)$ |
| VCMOSin_I | low CMOS input level | VSS-0.2V | 0 | 0.8 V |
| VCMOSin_h | High CMOS input level | VDD-0.8V | VDD | VDD + 0.2V |
| Rin_dig | Input impedance for digital <br> inputs | 10 MOhm |  |  |
| RinCMOS | Input resitance of CMOS input | 10 MOhm |  |  |
| RinLVDSin | input resistance of LVDS | 10 MOhm |  |  |
| RdifLVDSin | Différential input resistance of <br> LVDS diff. input | $10 \mathrm{MOhm} \mathrm{(2)}$ |  |  |
| Cin_ding | Input capacitor of digital inputs |  | 4 pF |  |
| VCMOSout_I | Low CMOS output level | 0 |  | +0.4 V |
| VCMOSout_h | High CMOS ouput level | VDD-0.4V |  | VDD |
| ICMOSout | Curent deliverable by CMOS <br> output |  |  | 4 mA |

Table 39: Main specifications for AFTER digital input/ouputs.
(1) Even, if they are also compatible with largest swing signal, it is better to use them with small swing digital signal for noise reason.
(2) There is no 100 Ohm resistor integrated between the two pins of a LVDS differential input inside the chip.

## 12 Chip Layout.

The integrated circuit is manufactured using the AMS CMOS $0.35 \mu \mathrm{~m}$ technology. The die area is $7800 \mu \mathrm{~m} \times 7400 \mu \mathrm{~m}$ for 500,000 transistors used. The number of pads is 160 .


Fig 27: Layout of the AFTER chip

## ANNEXE 1: Package Description.



Fig 28: Package Specifications

## ANNEXE 2: Bonding Diagram of the AFTER chip.



Be careful: - pins package \# 41, 80, 121, 160 connected to the cavity (leadframe) - double bonding on pin package \#41


Fig 29: Bonding diagram

ANNEXE 3: Labview vi to correct encoding of the "last read cell" information in the prototype version of the chip.


Fig 30: Labview Program to correct the last read cell bug


Supplies Bypass ( close to the chip)

## ANNEXE 5: PSRR simulations.

The power supply rejection of a channel of AFTER is plotted on Fig 31. The red and pink curves are corresponding to a 100 ns peaking time the black and the blue to a $2 \mu$ s peaking time. For each peaking time, the two curves are corresponding respectively to 0 pF and 30 pF input capacitors.
The PSRR is very poor and quasi independent on the input capacitor value. The main coupling is wide band and occurs at the CSA level. It is then filtered by the saper. Further investigations are showing that the main coupling path is the parasitic capacitor of the input protections. For this reason, dedicated supply pins are used for the protections diodes.


Fig 31: PSRR of the AFTER chip
Considering that the protection diodes are supplied with an ideal source, the PSSR, plotted on Fig 32 is improved by a factor of 4 . The coupling stays wideband and located in the CSA. It becomes proportional to the input capacitance. Some extra simulations show that the coupling is coming mainly from the circuit generating the gate voltage of the CSA PMOS cascod transistor. Actually, on Fig 33, the PSRR is improved by 10 dB , because the cascod gate voltage is bypassed by a 1 mF capacitor. An active cascod would probably improve the rejection...
These simulations point out a weak point of the design: to obtain optimal noise performances, the CSA power supply (already separated from those of the other blocks) must be very clean, at least in the bandwidth of the selected shaper. Otherwise, the supply noise in the shaper bandwidth will be amplified by a factor of 10. For the 120 fC range a $100 \mu \mathrm{~V}$ rms noise in the bandwidth of the filter will contribute to 1 mV rms output noise equivalent to $\sim 330 \mathrm{e}-\mathrm{rms}$ (coherent between the channels).


Fig 32: PSRR of the AFTER chip. Ideal Supplies for the protections


Fig 33: PSRR of the AFTER chip. Ideal Supplies for the protections. Ideal cascod bias.

