

Testing lepton flavor universality with the $B^0 \to K^* \tau^+ \tau^$ decay at the LHCb experiment

CPPM Ph.D. students' seminars

Jacopo Cerasoli

Supervisors: Julien Cogan, Giampiero Mancinelli

07/12/2020

Lepton Flavor Universality in the Standard Model

- **Standard Model**: the theory describing elementary particles and their interactions
- Extremely powerful: experimentally tested from lowenergy phenomena (~ 1 eV) up to the electroweak scale (~100 GeV)...
- ...but incomplete: describes only ~5% of the universe
- Many unsolved questions:
 - Dark matter and dark energy
 - Neutrino mass
 - Matter-antimatter asymmetry
 - Higgs mass fine-tuning problem
 - ...

Three families of fermions called "flavors"

Lepton Flavor Universality (LFU): The three charged leptons have the same weak coupling constant

 \rightarrow Differences in *branching ratios* for processes involving *e*, μ or τ in the final state are due only to their different masses

Is LFU correct?

- Standard Model predictions based on LFU assumption
- Some tensions are observed in experimental measurements involving different leptons in the final state

- Global fit with data from various experiments using EFT shows ~ 7σ deviation from SM (Eur. Phys. J. C (2019) 79 714)
- Need more data and measurements to shed light on these "anomalies"

Rare B⁰ decays...

- B⁰ mesons can decay via $b \rightarrow s l^+ l^-$ quark transitions
- These transitions are forbidden at three-level in the Standard Model
- Instead they proceed through loops or boxes diagrams at higher order

- The probability of the decay is suppressed
- Sensitive to hypothetical new particles entering the loop (Z', leptoquarks, ...)
- Branching ratio could be enhanced

Jacopo Cerasoli

...with τ leptons in the final state

- τ is the heaviest lepton: $m_{\tau} \sim 17 \cdot m_{\mu} \sim 3500 \cdot m_{e}$
- Because of its mass it could be the most sensitive to new physics effects
- τ modes still largely unexplored \checkmark
- More complex experimentally: X
 - It decays before it is detected
 - Neutrinos in the final state: missing energy

The LHCb experiment at the LHC

https://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08005/pdf

Precision experiment to study CP violation in B hadron decays
General purpose experiment optimized for detecting beauty and charm hadrons

- Peculiar features for rare B decays studies:
 - Vertex Locator (VELO): Precise measurement of displaced vertex positions (~13µm vertex resolution in transverse plane, ~70µm along beam axis)
 - RICH detectors: identification of charged hadrons via Cherenkov effect (over ~ 2-100 GeV range)
 - **Tracking system**: good momentum resolution (~0.8 % for 100 GeV particles)
 - Muon stations: muon identification and trigger

The B⁰ -> K* τ + τ - decay

- b \rightarrow s |+ |- transition, expected BR(B⁰ -> K* τ + τ -) ~ 10-7 *
- The search is performed using full LHCb dataset (9 fb⁻¹), using the channel:

 $B^{0} \to K^{*} (\to K^{-} \pi^{+}) \tau^{+} (\to \pi^{+} \pi^{+} \pi^{-} \bar{\nu}_{\tau}) \tau^{-} (\to \pi^{+} \pi^{-} \pi^{-} \nu_{\tau})$

• A second final state has been considered, less advanced state:

$$B^{0} \to K^{*} (\to K^{-} \pi^{+}) \tau^{+} (\to \pi^{+} \pi^{-} \bar{\nu}_{\tau}) \tau^{-} (\to \mu^{-} \nu_{\tau} \bar{\nu}_{\mu})$$

*https://arxiv.org/abs/1712.01919v1

Strategy

- Very challenging analysis:
 - High event multiplicity: ~ 10 candidates per event on average after trigger requirements, need to use multivariate algorithms to reduce background: selection done using a Boosted Decision Tree (BDT)
 - 2. **Two neutrinos in the final state**: LHCb has not full solid angle coverage, can not reconstruct missing energy
 - B mass can not be used to fit: Visible and analytically reconstructed B mass (computed applying tau mass constraints) have poor discriminating power. The fit is performed on the output of a second BDT
 - 4. There is **no obvious background template** which provides a **good description of the BDT distribution in the fit region**

Background template

- The background template is built with a data-driven method using **K* mass distribution**:
 - Fit is done selecting events close to the K* mass peak, ~ 75% efficiency on signal
 - Data from background regions are used as background proxy for BDT training
 - Control regions are used to get background template in the fit
 - The background template provides good description of BDT distribution in signal region if there's no correlation with K* mass for the variables used in the BDT

• Flatten transformation applied on fit BDT: signal distribution appears flat, background peaks at BDT = 0

- Blind analysis: last three bins are the most sensitive to the signal, they are set to 0 for events close to the K* mass peak
- It is crucial to have a good agreement of fit BDT distribution in signal and control region:

Testing Lepton Flavor Universality with $B^{0} \rightarrow K^{*} \tau^{+} \tau^{-}$

Fit model

- Branching ratio is measured relative to the one of a normalization channel $B^0 \rightarrow D^+$ ($\rightarrow \pi^+\pi^+K^-$) D_s^- ($\rightarrow K^+K^-\pi^+$)
- Systematics due to luminosity and cross-section measurements cancel out:

$$\frac{\mathscr{B}(B^0 \to K^* \tau^+ \tau^-)}{\mathscr{B}(B^0 \to D^+ D_s^-)} = \frac{N_{obs}^{K^* \tau \tau}}{\epsilon_{K^* \tau \tau} \cdot \sigma L} \cdot \frac{\epsilon_{DD_s} \cdot \sigma L}{N_{obs}^{DD_s}}$$

• The fit model contains three components: **DATA** = $f BR \cdot SIG + \frac{N_{bkg}^{sig}}{N_{bkg}^{ctl}} N_{tot}^{ctl} \cdot CTL - f BR \frac{\epsilon_{ctl}}{\epsilon_{sig}} \frac{N_{bkg}^{sig}}{N_{bkg}^{ctl}} \cdot CONT$

- CTL : background template from data in K* mass sidebands
- CONT : template from sidebands in simulation ("contamination" of signal in control region)
- BR : branching ratio
- Information on the normalization channel encoded in *f* factor
- The fit is performed simultaneously on the data-taking years
- The fit model has been validated using toy studies: no bias observed

Testing Lepton Flavor Universality with $B^0 \to K^* \tau^+ \tau^-$

Jacopo Cerasoli

- **Systematic uncertainties** are being investigated:
 - Data-MC agreement is checked on normalization channel

- Particle identification efficiency correction
 - PID variables are not well simulated, efficiency of PID cuts estimated with data-driven method
 - π and K high-purity samples used to determine an efficiency map, per-event efficiency assigned on signal candidates
- Fit template shape
 - Bin contents of signal and background templates are varied to asses a systematic on the statistical fluctuation of the model
- More to be investigated: trigger efficiency, track reconstruction correction, ...

• The semileptonic final state is also being investigated:

$$B \to K^* (\to K^- \pi^+) \tau^+ (\to \pi^+ \pi^+ \pi^- \bar{\nu}_\tau) \tau^- (\to \mu^- \bar{\nu}_\mu \nu_\tau)$$

- Similar difficulties as for the hadronic final state: high event multiplicity, poor mass discriminating power, ...
- More background due to semi-leptonic decays
- Didn't succeed in order to find a background template for the fit: in particular the K* mass shows more correlation with other variables

Conclusions

- Intriguing deviations from the SM predictions have arisen in flavor sector
- Lepton flavor universality might be violated
- Rare B decays with tau leptons in the final state are good probes for new physics beyond the SM
- $B^0 \rightarrow K^* \tau^+ \tau^-$ analysis ongoing in two different final states
- Challenging analysis, the selection strategy and fit procedure have been finalized
- Work on the estimation of systematic uncertainties is ongoing

Thanks!

From Facebook

Backup

- Same sign data (SS) used to validate the background template
- SS are selected requiring both tau's to have the same charge
- Full selection has been applied on data and the signal-control regions agreement has been checked:

Global fit with EFT

- Global fit with data from various experiments using EFT shows ~ 7σ deviation from SM (Eur. Phys. J. C (2019) 79 714)
- New Physics LFU violating left-handed coefficients C^V_{9µ} (vector coupling) and C^V_{10µ} (axial-vector coupling)
- New physics LF universal right-handed coefficient CU₉

