

Search for SUSY Electroweak production at LHC Run 2 and study of CMOS sensor performance for ITK replacement in second-half of HL-LHC

Centre de Physique des Particules de Marseille – CPPM Aix-Marseille University – AMU CPPM seminar

> Student: VU Ngoc Khanh Thesis Director: Steve MUANZA Thesis Co-Director: Farès DJAMA

> > December 07th, 2020

Outline

- PhD project
- **2** ATLAS detector
- Analysis
 - Supersymmetry (SUSY) model, signal model, reconstructed objects, simulated samples and data
 - General analysis strategy, Signal region (SR) optimization, background estimation
 - Preliminary results
- **4** Instrumentation
 - High luminosity LHC (HL-LHC), ITK tracker
 - CMOS sensors
 - Simulation
- **6** Summary

PhD project

11/2018 – 10/2021, granted by AMU ED 352, contains 2 main parts:

Analysis (Steve MUANZA)

- Conduct searches for SUSY EWK production, $\widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^{0}$ and $\widetilde{\chi}_1^{\pm} \widetilde{\chi}_1^{\pm}$ in events with **isolated lepton**, **jets** and **missing transverse momentum** at $\sqrt{s} = 13$ TeV with ATLAS detector.
- First time at LHC via 1 lepton channel, target integrated luminosity of 139 fb⁻¹, corresponding to full Run 2 collected data (2015 – 2018).

Instrumentation (Farès DJAMA)

Study physics performance of
 CMOS sensor for ITK replacement
 of ALTAS Pixel detector in 2nd-half
 of HL-LHC.

ATLAS detector

- A Toroidal LHC ApparatuS (ATLAS):
 - Multipurpose particle detector with nearly 4π coverage in solid angle. Consists of 4 sub-components.
 - **Inner tracking detector**: measures direction, momentum of charged particles.

- **Electromagnetic and hadron calorimeters**: stop most of particles and measure their energy and direction.
- Muon spectrometer: measures momenta of muons.
- ATLAS pixel detector:
 - innermost element of inner detector. Composed of 4 barrel and 6 end-cap disk layers. ~ 92 million pixels.
 - provides excellent spatial resolution for 1st vertices
 - Most important for identification and reconstruction of secondary vertices (b-tagging).
 - **Insertable B-layer (IBL)** added before start of Run 2 (2015) improving b-jet identification.

Supersymmetry (SUSY)

ivents / GeV

Data - Bkg

force particles

- Standard Model (SM) very successful; however, leaves many open questions (neutrino mass, hierarchy problem, Dark Matter, Dark Energy, etc.).
- **Supersymmetry** (SUSY) postulates existence of SUSY particles. each associated to SM one and differ ¹/₂ in spin.
- no sparticles observed \rightarrow **broken symmetry** \rightarrow sparticle mass \neq SM partner ones.
- Charginos $\widetilde{\chi}_{1,2}^{\pm}$, neutralinos $\widetilde{\chi}_{1,2,3,4}^{0}$: linear superpositions of SUSY partners of Higgs and of electroweak gauge bosons.
- If **R**-parity: $P_R = (-1)^{3B+L+2s}$ conserved (RPC): •
 - SUSY particles **produced in pairs**.
 - Lightest supersymmetric particles (LSP) stable, weakly interacting, thereby invisible to detector → Dark Matter candidate.

Supersymmetric partners

neutralinos ^x⁰ & charginos ^x[±]

Signal simplified models

WZ model

- $\widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^0$ directly pair-produced, $m_{\widetilde{\chi}_1^{\pm}} = m_{\widetilde{\chi}_2^0}$.
- $\widetilde{\chi}_1^{\pm} \rightarrow W \widetilde{\chi}_1^0$ and $\widetilde{\chi}_2^0 \rightarrow Z \widetilde{\chi}_1^0$ with **branching ratios set to 100%**.
- $W \rightarrow l v$ and $Z \rightarrow q \overline{q}$ with **SM branching ratios**.

Final state: 1 lepton + jets $+E_T^{miss}$

WW model

- $\widetilde{\chi}_1^{\pm} \widetilde{\chi}_1^{\mp}$ directly pair-produced.
- Each $\widetilde{\chi}_1^{\pm} \rightarrow W \widetilde{\chi}_1^0$ with **branching ratios set to 100%**.
- $W \rightarrow l v$ and $W \rightarrow q \bar{q}$ ' with SM branching ratios.

Reconstructed objects

leptons $p_{T} > 7$ (6) GeV for e (µ) $|\eta|^{(*)} < 2.47$ (2.5) for e (µ) Isolation conditions

jets PFlow algorithm $p_{\tau} > 25 \text{ GeV}$ $|\eta| < 2.8$ Central jets: $p_{\tau} > 30 \text{ GeV}$ b-jets: DL1r tagger

Missing transverse momentum

negative vectorial sum of momenta of leptons and jets and soft terms.

Data and simulated samples

- **Data**: **ATLAS full Run 2 data** (2015 2018, L = 139 fb⁻¹, \sqrt{s} = 13 TeV).
- Monte Carlo (MC) simulated samples used to model SM backgrounds and signals. Produced using full/fast ATLAS simulation^[1] and GEANT 4^[2].
- WZ and WW signal samples:
 - generated for each mass point $(m_{\tilde{\chi}_2^0}, m_{\tilde{\chi}_1^0})$, at leading order, using MadGraph, Pythia 8, EvtGen (MGPy8EG).
 - **Cross-sections** computed at **NLO** + **NLL accuracy**.
 - Background samples:

General analysis strategy

- Define several **regions in phase-space**, categorized to **3 types**:
 - **Signal region (SR)**: signal-rich region.
 - **Control region (CR)**: background-rich region, fit simulated backgrounds to data.
 - Validation region (VR): between SR and CR, validation of extrapolation.
- CR/VR/SR statistically independent, modeled by separate P.D.Fs, combined in a simultaneous fit.
- Analysis flow:
 - Normalize backgrounds to data in fit of CRs.
 - Extrapolate to VRs/SRs using transfer factors (ratio of event counts between CR and SR/VR).
 - If good data/background agreement in VRs, unblind SRs.
 - If no excess, add signal prediction and interpret/set limits.`

observable 1

- 3 different likelihood fit strategies:
 - **Background-only fit**: estimates backgrounds in VRs/SRs, only include CRs in fit to data, no signal contribution.
 - Model-dependent fit: simultaneous fit to data in all SRs and CRs, including signal contribution, hypothesis test for exclusion limit.
 - **Model-independent fit:** inject signal contribution to SR only. Compute signal contribution upper limit in SR and p-value for background-only hypothesis.
- handled effectively with **HistFitter** (arXiv:1410.1280)

Signal regions

• low $\delta m(\widetilde{\chi}_1^{\pm}/\widetilde{\chi}_2^0,\widetilde{\chi}_1^0)$

• high $\delta m(\widetilde{\chi}_1^{\pm}/\widetilde{\chi}_2^0,\widetilde{\chi}_1^0)$

- Define 2 kinds of SR to optimize the sensitivities for low and high mass regions of the grid.
 - **boosted SR**: number of large-R jets >= 1.
 - **resolved SR**: number of large-R jets = 0.
- Discriminating kinematic variables used to define SRs:
 - Transverse mass: $m_T = \sqrt{2 p_T(l) E_T^{miss}(1 - \cos[\Delta \phi(l, E_T^{miss})])}$
- Invariant mass of 2 leading jet $m_{jj} = \sqrt{2 p_T(j_1) p_T(j_2) (\cosh(\eta_1 - \eta_2) - \cos(\phi_1 - \phi_2))}$
- Missing transverse momentum significance

$$S^{2} = 2 \ln \left[\frac{\max_{\boldsymbol{p}_{T}^{\text{inv}} \neq 0} \mathcal{L} \left(E_{T}^{\text{miss}} | \boldsymbol{p}_{T}^{\text{inv}} \right)}{\max_{\boldsymbol{p}_{T}^{\text{inv}} = 0} \mathcal{L} \left(E_{T}^{\text{miss}} | \boldsymbol{p}_{T}^{\text{inv}} \right)} \right]$$

• Boosted W/Z tagger.

• higher average number of large-R jet in region with high $\delta m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0, \tilde{\chi}_1^0)$

Signal regions

- **Boosted regions**: main contribution to the sensitivity. Designed separately for each model, used large-R jet momentum.
- **Resolved regions: complementary regions** to increase sensitivity of $N_{large-R jet} = 0$ boosted ones. **Designed commonly** for both models, use invariant mass of 2 leading jet m_{jj}

Variable	Cuts				
	SRLM resolved	SRHM resolved	SRLM boosted	SRMM boosted	SRHM boosted
N _{lep}	1	l		1	
$p_{\rm T}^{\ell}[{\rm GeV}]$	>	25	> 25		
$N_{\text{jet}} (p_{\text{T}}^{\text{jets}} > 30 \text{ GeV})$	2 -	- 3	≤ 3		
$N_{\rm b-jet} (p_{\rm T}^{\rm jets} > 30 {\rm GeV})$	0		≤ 2		
$E_{\rm T}^{\rm miss}$ [GeV]	> 200		> 200		
$\Delta \phi(\ell, \mathrm{E}_\mathrm{T}^\mathrm{miss})$	< 2.8		< 2.6		
m _{jj} [GeV]	70 - 105		-		
N _{large-Rjets}	0		≥ 1		
Z-tagged large-R jet	-		yes		
$p_{T}^{large-Rjet}$ [GeV]	-		> 250		
$E_{\rm T}^{\rm imiss}$ significance	-		> 15		
m _T [GeV]	200 - 380	> 380	120 - 240	240 - 420	> 420

WZ model

WW model

Variable	Cuts				
	SRLM resolved	SRHM resolved	SRLM boosted	SRMM boosted	SRHM boosted
N _{lep}	1	l	1		
$p_{\rm T}^{\ell}[{\rm GeV}]$	>	25	> 25		
$N_{\text{jet}} (p_{\text{T}}^{\text{jets}} > 30 \text{ GeV})$	2 - 3		≤ 3		
$N_{\rm b-jet} (p_{\rm T}^{\rm jets} > 30 {\rm GeV})$	0		0		
$E_{\rm T}^{\rm miss}$ [GeV]	> 200		> 200		
$\Delta \phi(\ell, E_{\rm T}^{\rm miss})$	< 2.8		< 2.9		
m _{jj} [GeV]	70 - 105		-		
N _{large-Rjets}	0		≥ 1		
W-tagged large-R jet	-		yes		
$p_{\rm T}^{large-Rjet}$ [GeV]	_		> 300		
$E_{\rm T}^{\rm miss}$ significance	-		> 14		
$m_{\rm T}[{\rm GeV}]$	200 - 380	> 380	120 - 240	240 - 360	> 360

Background estimation

- Because of **similarity in SR definition**, **CRs** and **VRs designed commonly** for both WZ and WW models.
- Build dedicated CRs and VRs for each dominant background in SRs: Diboson 2L, Diboson 1L, W+jets and ttbar.
- CRs and VRs should:
 - show good agreement between data and MC;
 - have **large enough statistics**;
 - have high purity of considered backgrounds and low signal contamination.

CRs/VRs: Diboson 2L (DB2L)

- target diboson contribution coming from diboson processes with ≥ 2 leptons in final state.
- Require **exactly 2 leptons**, and add **invariant mass of 2 leptons** to define CR and VR.

 $m_{11} = \sqrt{2} p_T(l_1) p_T(l_2) (\cosh(\eta_{l_1} - \eta_{l_2}) - \cos(\phi_{l_1} - \phi_{l_2}))$

Variable	Cuts		
	CR	VR	
N _{lep}	2	2	
$p_{\mathrm{T}}^{\ell}[\mathrm{GeV}]$	> 25	> 25	
$N_{\rm jet} \ (p_{\rm T}^{\rm jets} > 30 {\rm GeV})$	≤ 3	≤ 3	
$N_{\rm b-jet} \ (p_{\rm T}^{\rm jets} > 30 {\rm ~GeV})$	0	0	
$E_{\rm T}^{\rm miss}$ [GeV]	> 200	> 200	
$\Delta \phi(\ell, \mathrm{E}_\mathrm{T}^\mathrm{miss})$	< 2.9	< 2.9	
$E_{\rm T}^{\rm miss}$ significance	> 12	> 10	
$m_{\ell\ell}$ [GeV]	70 – 100	70 - 100	
$m_{\rm T}[{\rm GeV}]$	50 - 200	200 - 350	

Background estimation

CRs/VRs: W+jets and Diboson 1L (WDB1L)

- Diboson 1L very similar to W+jets in kinematics → difficult to design proper regions. Instead, use common CRs and VRs.
- Define separate regions for boosted and resolved cases.
- Harmonize E_T^{miss} significance, m_T

Resolved WDB1L CR/VR

Variable	Cuts		
	CR WDB1L resolved	VR WDB1L resolved	
N _{lep}	1		
$p_{\rm T}^{\ell}[{\rm GeV}]$	>	25	
$N_{\text{jet}} (p_{\text{T}}^{\text{jets}} > 30 \text{ GeV})$	$2 \le N_{\text{jet}} \le 3$		
$N_{\rm b-jet} \ (p_{\rm T}^{\rm jets} > 30 {\rm ~GeV})$	0		
m _{ii} [GeV]	70 - 105		
$E_{\rm T}^{\rm miss}$ [GeV]	> 200		
$\Delta \phi(\ell, E_{\rm T}^{\rm miss})$	< 2.8		
$E_{\rm T}^{\rm miss}$ significance	> 12		
N _{large-Rjets}	0		
$m_{\rm T}[{\rm GeV}]$	50 - 80	80 - 200	

13

Background estimation

CRs/VRs: ttbar (Top)

Boosted Top CR/VRs

Variable	Cuts			
	CR	VR1	VR2	
N _{lep}	1	1	1	
$p_{\rm T}^{\ell}[{ m GeV}]$	> 25	> 25	> 25	
$N_{\rm jet} (p_{\rm T}^{\rm jets} > 30 {\rm GeV})$	≤ 3	≤ 3	≤ 3	
$N_{\rm b-jet} (p_{\rm T}^{\rm jets} > 30 {\rm GeV})$	>0	>0	>0	
$E_{\rm T}^{\rm miss}$ [GeV]	> 200	> 200	> 200	
$\Delta \phi(\ell, \mathrm{E}_\mathrm{T}^\mathrm{miss})$	< 2.9	< 2.9	< 2.9	
$E_{\rm T}^{\rm miss}$ significance	< 14	< 14	> 14	
N _{large-Rjets}	≤ 1	≤ 1	≤ 1	
W-tagged large-R jet	yes	yes	yes	
$p_{\rm T}^{large-Rjet}$ [GeV]	> 250	> 250	> 250	
$m_{\rm T}[{\rm GeV}]$	50 - 80	> 80	50 - 120	

Resolved Top

Variable	Cuts				
	CR Top resolved	VR Top resolved			
Nlep	1				
$p_{\rm T}^{\ell}[{\rm GeV}]$	>	25			
$N_{\text{jet}} (p_{\text{T}}^{\text{jets}} > 30 \text{ GeV})$	$2 \le N_{\rm jet} \le 3$				
$N_{\rm b-jet} \ (p_{\rm T}^{\rm jets} > 30 {\rm ~GeV})$	> 0				
$m_{jj}[\text{GeV}]$	70 - 105				
$E_{\rm T}^{\rm miss}$ [GeV]	> 200				
$\Delta \phi(\ell, \mathrm{E}_\mathrm{T}^\mathrm{miss})$	< 2.8				
$N_{\text{large}-Rjets}$	0				
$m_{\rm T}[{\rm GeV}]$	50 - 80	80 - 200			

14

Preliminary results

- Run background-only fit and model-dependent fit using HistFitter package, including all SRs, CRs and VRs.
- For the moment, only add experimental systematic uncertainties into fits, no theory systematic uncertainties included yet.

Background-only fit

- only **unblind data in CRs and VRs**, while keeping **SRs blinded**.
- After fit, **background yields** normalized in CRs and extrapolated into VRs show **good agreement with data**.

Preliminary results

Model-dependent fit

• Run hypothesis test and obtain exclusion contour limit at 95% CL for WZ and WW models

• $m_{\widetilde{\chi}_1^{\pm}/\widetilde{\chi}_1^{0}}$ up to ~ 700 GeV expected to be excluded at 95% CL for massless $\widetilde{\chi}_1^{0}$

Instrumentation

High luminosity LHC (HL-LHC)

- HL-LHC: upgrade of LHC, plan to be installed during Long Shutdown 3 (LS3, 2025 2026) and start in 2027.
- aims to increase luminosity by factor of 10.
- allow better studies of mechanisms and boost potential for new physics discoveries.

ATLAS Inner Tracker (ITk)

- Current ATLAS Inner Dectector (ID) works excellently, however,
 - **B-Layer**: designed for **fluence up to 10**¹⁵ **n(1 MeV)/cm**².
 - IBL: 2×10¹⁵ n(1 MeV)/cm²
 - suffer during Run 3 and cannot withstand HL-LHC radiation levels.
- Current ID tracker replaced by **ITk** in LS3 (2025 2026):
 - All silicon design;
 - η coverage up to 4 (ID ~2.5).
 - **Pixel**: 5 barrel layers (short barrel + inclined modules) + ring disks (**ATLAS-CPPM involved**).
 - Strip: 4 barrel layers + 6 end-cap rings.
- ITk should have the **same or better performance** as the current detector but **in the harsher environment of the HL-LHC**.

• Innermost layer of ITk designed for up to 10¹⁶ n(1 MeV)/cm², while total dose of HL-LHC foreseen up to 2×10¹⁶ n(1 MeV)/cm².

should be replaced by half-life of HL-LHC.

CMOS sensors

- CMOS technology **widely used** in electronics industry (e.g digital cameras) for ~20 years, shown up **many advantages.**
- CMOS possible to have **monolithic design**: sensor substrate and electronics layers embedded in same silicon die.
- The monolithic design would be more interesting:
 - thinner and smaller pixels, less material, reduction of detector cost.
 - reduce multiple scatterings, better spatial resolution, faster production time.

- However, CMOS has not been designed to withstand radiation levels of HL-LHC. Is it woth? Depend on Pt scale of new physics processes.
- Let's see by simulation
 - So far, already known CMOS geometry (pixel size, sensor thickness) and parameters in digitization (noise, threshold).
 - Next, run with generated samples for high-Pt processes at HL-LHC to study tracking performance, b-tagging performance and later study with low/medium-Pt processes.

Summary

Analysis

• Search for SUSY EWK production, $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{0}$ and $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ with ATLAS Run 2 collected data (2015 – 2018, L=139 fb⁻¹, 13 TeV).

- Defined SRs/CRs/VRs for boosted and resolved scenarios using large-R jet information.
- Obtained preliminary results with only experimental uncertainties included
 - Background-only fit: good agreement between data and MC in CRs and VRs, good normalization factors after fit.
 - Model-dependent fit: expected limit up to $m_{\tilde{\chi}_1^{\dagger}/\tilde{\chi}_2^{\circ}}$ of 700 GeV for massless $\tilde{\chi}_1^{\circ}$
- Next step: add theory uncertainties, run model-independent fit, unblind SRs.

Instrumentation

- Study performance of CMOS sensors for replacement of ITk innermost layers in 2nd-half HL-LHC.
- So far, already have CMOS geometry and parameters for simulation.
- Next: use simulated samples to evaluate CMOS performance in traking and in b-tagging.

Other activities

- Contributed to search for $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{0}$ production through Wh1lbb channel, was published in EPJC. [arXiv:1909.09226]
- Study pixel-level leakage current for IBL and Pixel modules (Qualification task). [link]
- Estimation of pixel-hit loss rate using real data. [link]

Cảm ơn

Back up

Backup: Statistical analysis in SUSY searches

For most SUSY searches construct likelihood for hypothesis testing based on data and predicted SM background in all SRs/CRs:

Dimensions

 We chose the use the dimension of present sensors of innermost layer of ITK pixels:

$2 \times 4 \ cm^2$

- This will minimize efforts needed to modify geometry.
- And seems realistic.
- Sensor thickness:

50 µm

- A most probable value of charge released by a MIP will be about 4 000 electrons.
- Pixel size:

$25\,\mu m \times 25\,\mu m$

- Is already feasible.
- Going smaller with the present services scheme will be difficult.
- But we should stay open for possible future developments.

Digitization Parameters

• Threshold:

600 electrons

- Still efficient if charge is divided by 2 because of radiation effects.
- What can be the threshold spread after tuning ? 200 electrons ?
- Noise:

50 electrons

- This is half of present noise.
- Keeps S/N at high values (about 80) before radiation effects.
- ToT coded on:

4 Bits

• Like IBL and present ITK

Signal contamination in DB2L CR/VR

• WZ and WW signal contamination in DB2L CR/VR

CR WW signal contamination

CR WZ signal contamination

Silvia

signal contamination in boosted WDB1L CR/VRs

CR Wjets boost WZ signal contamination

VR1 Wjets boost WZ signal contamination

.

6Ó0

800

0

200

40⁰

0.5

.

1000 1200 m(χ̃_1) (GeV)

VR2 Wjets boost WZ signal contamination

VR2 Wjets boost WW signal contamination

bgk-only fit results

Yieldstable in CRs

CR channel	DB2LCREM	WDB1LCRresolvedEM	TCRresolvedEM	WDB1LCRboostedEM	TCRboostedEM
Observed events	221	671	987	2429	1069
Fitted bkg events	221.00 ± 14.93	680.72 ± 21.91	972.02 ± 29.05	2419.80 ± 46.43	1084.83 ± 31.39
Fitted ttbar events	54.79 ± 4.54	64.84 ± 4.35	607.63 ± 31.71	415.00 ± 28.97	686.52 ± 39.25
Fitted singletop events	14.26 ± 1.56	18.68 ± 1.59	127.25 ± 11.41	213.94 ± 13.23	267.71 ± 17.96
Fitted wjets events	$4.47^{+7.78}_{-4.47}$	536.29 ± 19.90	207.09 ± 23.35	1354.82 ± 41.45	86.77 ± 6.67
Fitted zjets events	11.95 ± 4.38	3.45 ± 0.45	1.70 ± 0.28	6.68 ± 0.70	0.41 ± 0.20
Fitted diboson2l events	131.23 ± 19.40	2.20 ± 0.47	0.66 ± 0.14	9.04 ± 1.58	0.78 ± 0.15
Fitted diboson1l events	0.08 ± 0.02	52.83 ± 4.59	24.26 ± 3.78	396.18 ± 13.83	$\textbf{37.16} \pm \textbf{4.04}$
Fitted diboson0l events	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
Fitted multiboson events	0.52 ± 0.11	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
Fitted tth events	0.08 ± 0.01	0.01 ± 0.01	0.15 ± 0.02	0.04 ± 0.02	0.17 ± 0.02
Fitted ttv events	0.94 ± 0.16	0.29 ± 0.12	1.07 ± 0.25	1.09 ± 0.17	1.77 ± 0.31
Fitted vh events	2.69 ± 0.45	2.13 ± 0.69	2.21 ± 0.74	23.02 ± 1.28	3.55 ± 0.60
MC exp. SM events	248.68 ± 14.21	731.17 ± 32.81	1164.60 ± 88.01	2748.67 ± 82.21	1462.14 ± 35.48
MC exp. ttbar events	85.39 ± 5.65	93.65 ± 5.92	849.72 ± 49.71	651.44 ± 29.24	1054.07 ± 25.27
MC exp. singletop events	15.42 ± 1.77	18.43 ± 1.60	113.75 ± 14.01	215.30 ± 13.57	270.82 ± 18.40
MC exp. wjets events	$1.57^{+3.39}_{-1.57}$	560.38 ± 25.95	176.95 ± 28.01	1421.58 ± 38.29	92.11 ± 6.53
MC exp. zjets events	8.92 ± 4.00	3.09 ± 0.51	1.55 ± 0.28	6.44 ± 0.65	0.61 ± 0.32
MC exp. diboson2l events	132.98 ± 6.29	2.27 ± 0.25	0.56 ± 0.07	9.55 ± 0.47	0.75 ± 0.07
MC exp. diboson1l events	0.08 ± 0.02	50.65 ± 5.84	18.68 ± 4.94	418.14 ± 15.67	$\textbf{37.54} \pm \textbf{3.59}$
MC exp. diboson0l events	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	$\textbf{0.00} \pm \textbf{0.00}$
MC exp. multiboson events	0.53 ± 0.12	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
MC exp. tth events	0.08 ± 0.01	0.02 ± 0.01	0.16 ± 0.02	0.07 ± 0.04	0.17 ± 0.03
MC exp. ttv events	0.86 ± 0.15	0.19 ± 0.11	1.17 ± 0.25	1.06 ± 0.17	1.77 ± 0.33
MC exp. vh events	2.85 ± 0.47	2.50 ± 0.82	2.06 ± 0.58	25.09 ± 1.89	$\textbf{4.29} \pm \textbf{0.97}$

bgk-only fit results

VR channel DB2LVREM WDB1LVRresolvedEM TVRresolvedEM WDB1LVR1boostedEM WDB1LVR2boostedEM TVR1boostedEM TVR2boostedEM Observed events 305 544 929 1143 463 568 109 330.88 ± 37.54 418.09 ± 27.05 649.84 ± 33.30 102.83 ± 6.17 Fitted bkg events 673.71 ± 78.90 884.23 ± 66.94 1155.25 ± 56.34 Fitted ttbar events 63.16 ± 4.31 60.51 ± 5.44 593.15 ± 47.71 242.44 ± 17.82 35.30 ± 2.94 388.61 ± 26.18 44.49 ± 3.53 Fitted singletop events 13.95 ± 1.72 105.64 ± 13.90 109.56 ± 8.18 182.78 ± 15.42 29.62 ± 3.23 14.62 ± 1.11 23.33 ± 1.91 $0.77^{+1.11}_{-0.77}$ Fitted wiets events 523.53 ± 71.63 258.33 ± 17.21 52.98 ± 4.96 18.85 ± 1.72 156.35 ± 27.88 602.33 ± 36.69 $0.01\substack{+0.02\\-0.01}$ 0.70 ± 0.15 Fitted ziets events 17.51 ± 2.17 7.27 ± 2.33 3.10 ± 1.16 6.46 ± 1.09 1.31 ± 0.41 Fitted diboson2l events 225.14 ± 37.73 14.94 ± 2.93 2.14 ± 0.52 14.04 ± 2.35 2.94 ± 0.50 1.09 ± 0.22 0.15 ± 0.03 Fitted diboson11 events 0.01 ± 0.00 49.68 ± 5.43 14.10 ± 2.24 165.72 ± 19.14 91.68 ± 8.80 16.37 ± 3.75 7.91 ± 1.99 Fitted diboson0l events 0.00 ± 0.00 0.00 ± 0.00 Fitted multiboson events 1.02 ± 0.24 0.00 ± 0.00 0.03 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.05 ± 0.02 Fitted tth events 0.11 ± 0.02 0.40 ± 0.05 0.08 ± 0.02 0.01 ± 0.00 0.20 ± 0.03 0.02 ± 0.01 0.04 ± 0.01 Fitted tty events 1.62 ± 0.26 1.06 ± 0.21 6.61 ± 0.87 1.70 ± 0.26 0.28 ± 0.11 4.14 ± 0.62 0.41 ± 0.10 Fitted vh events 6.91 ± 0.90 2.67 ± 0.53 2.74 ± 0.57 12.89 ± 1.17 5.52 ± 0.67 2.37 ± 0.85 1.36 ± 0.13 MC exp. SM events 619.32 ± 99.21 1006.09 ± 134.76 1295.77 ± 57.57 448.26 ± 23.57 835.88 ± 41.63 124.13 ± 7.87 363.65 ± 10.45 MC exp. ttbar events 94.03 ± 4.25 84.08 ± 8.33 763.90 ± 99.93 359.80 ± 19.68 53.91 ± 3.32 578.11 ± 26.50 63.88 ± 4.89 MC exp. singletop events 14.75 ± 1.14 12.92 ± 1.84 86.14 ± 15.55 112.78 ± 9.09 23.50 ± 1.93 179.68 ± 15.09 28.04 ± 3.21 $2.59^{+4.19}_{-2.59}$ MC exp. wjets events 455.97 ± 84.19 131.36 ± 25.39 632.84 ± 33.68 270.49 ± 13.75 54.99 ± 5.02 20.90 ± 2.02 $0.12^{+0.19}_{-0.12}$ MC exp. zjets events 5.49 ± 2.20 2.14 ± 0.94 7.08 ± 1.20 0.74 ± 0.15 1.06 ± 0.36 16.28 ± 2.29 MC exp. diboson2l events 227.33 ± 5.96 13.68 ± 0.60 0.15 ± 0.02 13.39 ± 1.29 1.86 ± 0.36 2.98 ± 0.15 1.07 ± 0.12 MC exp. diboson1l events 9.22 ± 2.27 0.01 ± 0.00 43.25 ± 6.62 11.47 ± 2.58 154.32 ± 20.64 91.08 ± 8.12 14.02 ± 3.80 MC exp. diboson0l events 0.00 ± 0.00 0.00 ± 0.00 MC exp. multiboson events 0.95 ± 0.23 0.00 ± 0.00 0.05 ± 0.03 0.00 ± 0.00 0.06 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 MC exp. tth events 0.10 ± 0.02 0.03 ± 0.01 0.36 ± 0.05 0.08 ± 0.02 0.01 ± 0.00 0.22 ± 0.04 0.02 ± 0.01 MC exp. ttv events 1.65 ± 0.26 1.03 ± 0.21 6.59 ± 0.87 1.84 ± 0.30 0.25 ± 0.10 4.04 ± 0.62 0.45 ± 0.11 MC exp. vh events 5.96 ± 1.04 3.08 ± 0.58 2.26 ± 0.60 13.30 ± 1.27 5.30 ± 0.64 2.67 ± 1.00 1.34 ± 0.15

Yieldstable in VRs

bgk-only fit results

SR channel	SRLMresolvedEM	SRHMresolvedEM	SRLMboostedWZEM	SRMMboostedWZEM	SRHMboostedWZEM
Observed events	585	192	19	18	3
Fitted bkg events	541.80 ± 62.87	202.80 ± 68.78	19.56 ± 2.56	11.05 ± 7.17	2.89 ± 0.97
Fitted ttbar events	48.14 ± 5.11	8.27 ± 2.40	1.58 ± 0.28	0.76 ± 0.16	0.12 ± 0.04
Fitted singletop events	9.03 ± 1.52	3.71 ± 2.18	0.59 ± 0.13	0.76 ± 0.24	0.44 ± 0.15
Fitted wjets events	396.01 ± 57.14	163.37 ± 62.00	10.54 ± 1.74	5.09 ^{+7.10} 5.09	0.81 ± 0.39
Fitted zjets events	12.89 ± 6.49	7.78 ^{+10.42}	0.72 ± 0.23	0.00 ± 0.00	0.12 ± 0.10
Fitted diboson2l events	33.83 ± 6.82	10.21 ± 3.30	1.37 ± 0.45	1.58 ± 0.36	0.47 ± 0.17
Fitted diboson1l events	37.26 ± 4.09	8.46 ± 2.29	3.81 ± 0.53	2.30 ± 0.42	0.75 ± 0.24
Fitted diboson0l events	0.19 ± 0.03	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
Fitted multiboson events	0.15 ± 0.04	$0.01^{+0.01}_{-0.01}$	0.02 ± 0.02	0.02 ± 0.01	0.01 ± 0.01
Fitted tth events	0.09 ± 0.02	0.02 ± 0.01	0.01 ± 0.00	0.01 ± 0.00	0.00 ± 0.00
Fitted ttv events	2.41 ± 0.39	0.54 ± 0.17	0.90 ± 0.19	0.53 ± 0.13	0.18 ± 0.07
Fitted vh events	1.78 ± 0.46	0.44 ± 0.26	0.02 ± 0.00	0.01 ± 0.00	0.00 ± 0.00
MC exp. SM events	585.25 ± 62.61	192.88 ± 67.64	19.70 ± 2.55	18.02 ± 17.13	3.38 ± 1.18
MC exp. ttbar events	72.21 ± 6.73	11.95 ± 3.44	1.90 ± 0.44	1.18 ± 0.23	0.15 ± 0.06
MC exp. singletop events	8.27 ± 1.59	2.29 ± 1.54	0.68 ± 0.16	1.01 ± 0.36	0.46 ± 0.16
MC exp. wjets events	425.51 ± 57.30	155.97 ± 61.09	10.49 ± 1.65	$11.39^{+17.05}_{-11.39}$	1.22 ± 0.61
MC exp. zjets events	7.44 ± 5.03	$2.90^{+4.46}_{-2.90}$	0.53 ± 0.22	0.00 ± 0.00	0.12 ± 0.10
MC exp. diboson2l events	31.97 ± 3.27	10.46 ± 2.79	1.52 ± 0.37	1.61 ± 0.27	0.47 ± 0.16
MC exp. diboson1l events	35.16 ± 4.10	8.37 ± 2.25	3.64 ± 0.52	2.30 ± 0.41	0.74 ± 0.24
MC exp. diboson0l events	0.19 ± 0.03	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
MC exp. multiboson events	0.16 ± 0.04	$0.04^{+0.05}_{-0.04}$	$0.02^{+0.02}_{-0.02}$	0.01 ± 0.01	$0.01^{+0.01}_{-0.01}$
MC exp. tth events	0.09 ± 0.02	0.02 ± 0.01	0.01 ± 0.00	0.01 ± 0.00	0.00 ± 0.00
MC exp. ttv events	2.62 ± 0.43	0.53 ± 0.17	0.88 ± 0.18	0.50 ± 0.12	0.20 ± 0.08
MC exp. vh events	1.63 ± 0.44	0.36 ± 0.24	0.02 ± 0.00	0.00 ± 0.00	0.00 ± 0.00

Yieldstable in SRs