## Cetacean sounds detection with KM3NeT hydrophones

## 16/11/2020

Carlo Guidi

#### **KM3NeT**

KM3Net is a submarine telescope for the detection of cosmic neutrinos.

Some neutrinos, crossing the earth, interact and produce a muon.

Photomultipliers detect the light generated by Cherenkov effect of muons traveling in a medium in which their speed is greater than the speed of light in that medium.



#### Why do we need a positioning system?

- $\succ$  During deployment, the position of the string bases is determined with an accuracy of 1 m
- A submarine current may be present at speeds up to 20 cm/s which tilts the string moving the DOM from the vertical to about 7 m in the most pessimistic case
- The goal is to have a temporal resolution of the order of the nanosecond, in order to reconstruct the tracks of the muons
- $\succ$  The light travels 1 *ns* in about 20 *cm* in sea water
- For this reason it is necessary to know with a precision less than 20 cm the position of each DOM

#### KM3NeT Acoustic Positioning System



Geometrical configuration:

In principle the three beacons emit 11 pulses every 10 minutes

Currently Beacon 1 is not working

#### ACOUSTIC POSITIONING SYSTEM APPLIED TO REAL DATA



#### ACOUSTIC POSITIONING SYSTEM APPLIED TO REAL DATA



## Cetacean detection – possible studies:

Classification of cetaceans' sounds

Study on the behaviour of marine mammals

- > Study on the presence and passage of cetaceans in the area
- > Effect of anthropic activity on the marine ecosystem

> Localization and tracking of cetaceans that emit clicks (in particular sperm whales)

#### SIGNALS FROM DU3 KM3NeT HYDROPHONE



Two different kind of clicks have been detected

#### Main differences between Striped Dolphin and Sperm Whale clicks

Inter Click Interval

Click Shape

Frequency Range

## Inter Click Interval



## Click shape



## Frequency range



#### Comparison with CIBRA sounds

http://www-3.unipv.it/cibra/edu\_dolphins\_uk.html

#### Striped dolphin



#### Comparison with CIBRA sounds

#### http://www-3.unipv.it/cibra/edu spermwhale uk.html

#### Sperm whale



#### CLICK IDENTIFICATION

- Application of an high pass filter (2 kHz or 5 kHz) to mitigate the low frequency noise
- Division of the audio file into time windows of a certain duration (0.15 s) with an overlap of 50% to be sure not to skip some clicks.



15

#### CLICK IDENTIFICATION

- For each time window calculation of the Signal to Noise Ratio (SNR) as a function of time, taking as a reference noise the median of the absolute value of the envelope (Hilbert function) of the signal.
- In each time window there is a click if there is a value of SNR greater than 10 times the median of all the SNR values in that time window (SNR threshold). The value of the threshold is empirical.



#### CLICK IDENTIFICATION

- Isolation of a segment of the same duration of the time windows in which I know there is only background noise and I calculate the FFT.
- Take the amplitude of the FFT at the frequencies between 2 kHz and 20 kHz (typical sperm whale frequencies), 20 kHz and 50 kHz (typical striped dolphin frequencies) and between 2 kHz and 50 kHz (generic click) and save those values in different arrays (noise thresholds).



If at least 20% of the values are greater than the noise threshold at the different frequencies, I assign a value 1 to the time window (possible click), otherwise I assign the value 0 (no clicks).

#### Spectrums



If a cetacean click is present, at least 20% of the frequency bins of the spectrum is greater than the same frequency bins of the pure background noise

#### **Click Identifier – Best Configuration**

#### General parameters High Pass Filter Frequency: 2 kHz > SNR threshold: $Median_{SNR} \cdot 8$ ➢ Frequency bin percentage: 20 % **Striped Dolphin parameters** Sperm Whale parameters Sperm Whale clicks Frequency Limits: $2 kHz \le f_{SD} \le 22 kHz$ Striped Dolphin clicks Frequency Limits: $30kHz \leq f_{SW} \leq 50 kHz$ False Positive clicks Frequency Limits: $2 kHz \le f_{SW} \le 6 kHz$ Striped Dolphin clicks in a file: $N_{SD} \ge 3$ ▶ False Positive/True Positive Ratio: $R_{amp_{FP}/amp_{sw}} < 4$ Striped Dolphin Inter Click Interval: $ICI_{SD} > 0.05 s$ Sperm Whale clicks in a file: $3 \le N_{SW} \le 7$

 $\succ$ 

 $\geq$ 

- Sperm Whale Inter Click Interval:  $ICI_{SW} > 0.4 s$
- ➢ Standard Deviation of Sperm Whale ICIs:  $\sigma_{ICI_{SW}} < 0.1$

#### Application of the Click Identifier (example 1)



Sperm Whale clicks: 64

Striped Dolphin clicks: 14

#### Application of the Click Identifier (example 2)



Sperm Whale clicks: 0

Striped Dolphin clicks: 1966

#### Application of the Click Identifier (example 3)



Sperm Whale clicks: 0

Striped Dolphin clicks: 0

## Application of the Click Identifier to 100 RUNs (April and May 2020)



# Application of the Click Identifier to 100 RUNs (April 2020)



#### RUN 7997 DU3 hydrophone



## Sperm Whale clicks in Three hydrophones



## Sperm Whale clicks in Three hydrophones



#### Other example

RUN 8584 (10 minutes)

Receivers: DU9 hydrophone, DU1 DOM10, DU3 DOM10, DU11 DOM10 piezos



## Application of the method Examples

**ABS of Cross correlation** DU9 hydrophone DU11DOM10 0.00025 0.00008 Click 1 Click 2 0.00020 0.00006 0.00015 Amplitude Amplitude 0.00004 0.00010 0.00002 0.00005 0.00000 0.00000 35000 5000 10000 15000 20000 25000 30000 35000 20000 25000 5000 10000 15000 30000 40000 0 40000 0 Samples Samples QF: 6626 QF: 2906 Delay Time: 0.030046 s Delay Time: 0.030049 s  $1 \,\mu s$  uncertainty?

## Application of the method

#### Examples



## Application of the method

![](_page_30_Figure_1.jpeg)

## Application of the method Examples

ABS of Cross correlation

DU1 DOM10

DU9 hydrophone

![](_page_31_Figure_3.jpeg)

#### **POSITION RECONSTRUCTION ALGORITHM**

Set of hydrophones:  $h_i$ , i = 1, ..., M at positions  $(x_i, y_i, z_i)$ 

Whale at the position  $(x_w, y_w, z_w)$ 

Individual ranges: 
$$R_i = R_0 + \delta R_i$$
 with  $\delta R_i = c \delta T_i$  (1)

Distances between the whale and the hydrophones:  $R_{wi}^2 = (x_i - x_w)^2 + (y_i - y_w)^2 + (z_i - z_w)^2$  (2)

$$R_0^2 = x_0^2 - 2x_0x_w + x_w^2 + y_0^2 - 2y_0y_w + y_w^2 + z_0^2 - 2z_0z_w + z_w^2$$
(3)

$$R_0^2 + 2R_0\delta R_i + \delta R_i^2 = x_i^2 - 2x_i x_w + x_w^2 + y_i^2 - 2y_i y_w + y_w^2 + z_i^2 - 2z_i z_w + z_w^2$$
(4)

Subtracting equation (3) from equation (4):

$$2R_0\delta R_i + \delta R_i^2 = x_i^2 - x_0^2 - 2(x_i - x_0)x_w + y_i^2 - y_0^2 - 2(y_i - y_0)y_w + z_i^2 - z_0^2 - 2(z_i - z_0)z_w$$

#### **POSITION RECONSTRUCTION ALGORITHM**

$$2R_0\delta R_i + \delta R_i^2 = x_i^2 - x_0^2 - 2(x_i - x_0)x_w + y_i^2 - y_0^2 - 2(y_i - y_0)y_w + z_i^2 - z_0^2 - 2(z_i - z_0)z_w$$

4 unknowns ( $R_0$ ,  $x_w$ ,  $y_w$ ,  $z_w$ ) -> With 5 hydrophones we may form 4 equations

$$\begin{pmatrix} (x_1^2 - x_0^2) + (y_1^2 - y_0^2) + (z_1^2 - z_0^2) - (\delta R_1)^2 \\ (x_2^2 - x_0^2) + (y_2^2 - y_0^2) + (z_2^2 - z_0^2) - (\delta R_2)^2 \\ (x_3^2 - x_0^2) + (y_3^2 - y_0^2) + (z_3^2 - z_0^2) - (\delta R_3)^2 \\ (x_4^2 - x_0^2) + (y_4^2 - y_0^2) + (z_4^2 - z_0^2) - (\delta R_4)^2 \end{pmatrix} = 2 \begin{pmatrix} \delta R_1 & (x_1 - x_0) & (y_1 - y_0) & (z_1 - z_0) \\ \delta R_2 & (x_2 - x_0) & (y_2 - y_0) & (z_2 - z_0) \\ \delta R_3 & (x_3 - x_0) & (y_3 - y_0) & (z_3 - z_0) \\ \delta R_4 & (x_4 - x_0) & (y_4 - y_0) & (z_4 - z_0) \end{pmatrix} \begin{pmatrix} R_0 \\ x_w \\ y_w \\ z_w \end{pmatrix}$$

If all sensors are at the same depth:

$$\begin{pmatrix} (x_1^2 - x_0^2) + (y_1^2 - y_0^2) + (z_1^2 - z_0^2) - (\delta R_1)^2 \\ (x_2^2 - x_0^2) + (y_2^2 - y_0^2) + (z_2^2 - z_0^2) - (\delta R_2)^2 \\ (x_3^2 - x_0^2) + (y_3^2 - y_0^2) + (z_3^2 - z_0^2) - (\delta R_3)^2 \end{pmatrix} = 2 \begin{pmatrix} \delta R_1 & (x_1 - x_0) & (y_1 - y_0) & (z_1 - z_0) \\ \delta R_2 & (x_2 - x_0) & (y_2 - y_0) & (z_2 - z_0) \\ \delta R_3 & (x_3 - x_0) & (y_3 - y_0) & (z_3 - z_0) \end{pmatrix} \begin{pmatrix} R_0 \\ x_w \\ y_w \end{pmatrix}$$

We can estimate the whale depth  $z_w$  by:  $z_w = z_0 \pm \sqrt{R_0^2 - (x_w - x_0)^2 - (y_w - y_0)^2}$ 

#### GEOMETRICAL CONFIGURATIONS OF THE RECEIVERS

![](_page_34_Figure_1.jpeg)

#### POSITION RECONSTRUCTION SIMULATION

![](_page_35_Figure_1.jpeg)

## Conclusions

- Two different types of clicks have been identified, probably emitted by striped dolphins and sperm whales
- > The current version of the click identifier distinguishes the two different clicks.
- ➤ We see the cetacean signals in different receivers and we can use this information to improve the accuracy of the detection and calculate the delay times.
- Simulations of the source position reconstruction algorithm have been performed, obtaining good results

## Future steps and work in progress

Begin to reconstruct the position of the acoustic sources using the information of the time delays between the different receivers