Constraints on anomalous Higgs boson couplings to vector bosons and fermions in production and decay in the $H \rightarrow 4l$ channel IRN Terascale

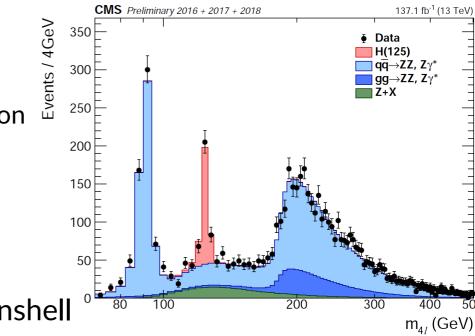
Savvas Kyriacou

On behalf of the Compact Muon Solenoid

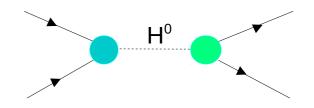
Intro

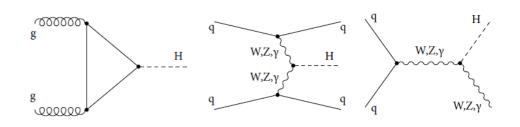
• Precision coupling measurements:

- Characterize properties of the 125GeV boson
- Probe new physics
- Probe CP violation in Higgs sector


• Focus on HVV/Hff couplings in $H \rightarrow 4I$

Dedicated analysis with full RunII data onshell


+ first off-shell AC measurement нід-18-002


• Related papers results from CMS :

- $H \rightarrow ZZ$ measurements in CMS HIG-19-001
- CP in H→ ττ <u>HIG-20-006</u>
- CP in ttH with $H \rightarrow \gamma \gamma$ <u>HIG-19-013</u>
- STXS-based measurement <u>ніс-19-005</u>
- JHU generator frameworks review

CMS

Phenomenology and EFT

Parametrize H couplings in the mass eingestate basis:

$$\begin{split} A(\mathrm{Hff}) &= -\frac{m_{\mathrm{f}}}{v} \bar{\psi}_{\mathrm{f}} \left(\kappa_{\mathrm{f}} + \mathrm{i}\,\tilde{\kappa}_{\mathrm{f}}\gamma_{5}\right) \psi_{\mathrm{f}} \\ A(\mathrm{HVV}) &= \frac{1}{v} \left[a_{1}^{\mathrm{VV}} + \frac{\kappa_{1}^{\mathrm{VV}} q_{\mathrm{V1}}^{2} + \kappa_{2}^{\mathrm{VV}} q_{\mathrm{V2}}^{2}}{\left(\Lambda_{1}^{\mathrm{VV}}\right)^{2}} + \frac{\kappa_{3}^{\mathrm{VV}} \left(q_{\mathrm{V1}} + q_{\mathrm{V2}}\right)^{2}}{\left(\Lambda_{Q}^{\mathrm{VV}}\right)^{2}} \right] m_{\mathrm{V1}}^{2} \epsilon_{\mathrm{V1}}^{*} \epsilon_{\mathrm{V2}}^{*} \\ &+ \frac{1}{v} a_{2}^{\mathrm{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_{3}^{\mathrm{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \end{split}$$

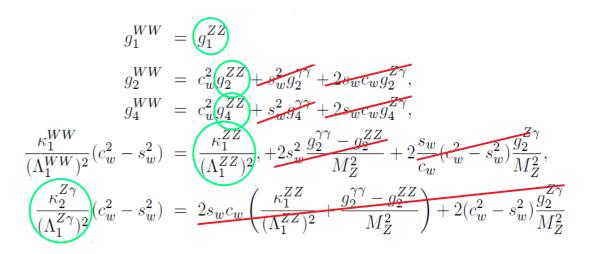
Notation:

$$\mathbf{a}_{i}^{\mathsf{VV}} = \mathbf{g}_{i}^{\mathsf{VV}} \text{ for } i = 1,2 \quad \mathbf{a}_{3}^{\mathsf{VV}} = \mathbf{g}_{4}^{\mathsf{VV}}$$
$$\mathbf{g}_{\Lambda 1}^{ZZ,\mathsf{WW}} = \frac{\kappa_{1}^{WW}}{(\Lambda_{1}^{WW})^{2}} \frac{\kappa_{1}^{ZZ}}{(\Lambda_{1}^{ZZ})^{2}}$$
$$\mathbf{g}_{\Lambda 1}^{Z\gamma} = \frac{\kappa_{2}^{Z\gamma}}{(\Lambda_{1}^{Z\gamma})^{2}}$$

a1 SM a2 CP even AC a3 CP odd AC

Amplitude Related to a fundamental Lagrangian density \rightarrow couplings related to the Lagrangian coefficients

$$\mathcal{L}_{\text{hvv}} = \frac{h}{v} \left[(1 + \delta c_z) \frac{(g^2 + g'^2)v^2}{4} Z_\mu Z_\mu + c_{zz} \frac{g^2 + g'^2}{4} Z_{\mu\nu} Z_{\mu\nu} + c_{z\Box} g^2 Z_\mu \partial_\nu Z_{\mu\nu} + \tilde{c}_{zz} \frac{g^2 + g'^2}{4} Z_{\mu\nu} \tilde{Z}_{\mu\nu} \\ + (1 + \delta c_w) \frac{g^2 v^2}{2} W^+_\mu W^-_\mu + c_{ww} \frac{g^2}{2} W^+_{\mu\nu} W^-_{\mu\nu} + c_{w\Box} g^2 \left(W^-_\mu \partial_\nu W^+_{\mu\nu} + \text{h.c.} \right) + \tilde{c}_{ww} \frac{g^2}{2} W^+_{\mu\nu} \tilde{W}^-_{\mu\nu} \\ + c_{z\gamma} \frac{e\sqrt{g^2 + g'^2}}{2} Z_{\mu\nu} A_{\mu\nu} + \tilde{c}_{z\gamma} \frac{e\sqrt{g^2 + g'^2}}{2} Z_{\mu\nu} \tilde{A}_{\mu\nu} + c_{\gamma\Box} gg' Z_\mu \partial_\nu A_{\mu\nu} \\ + c_{\gamma\gamma} \frac{e^2}{4} A_{\mu\nu} A_{\mu\nu} + \tilde{c}_{\gamma\gamma} \frac{e^2}{4} A_{\mu\nu} \tilde{A}_{\mu\nu} + c_{gg} \frac{g^2_s}{4} G^a_{\mu\nu} G^a_{\mu\nu} + \tilde{c}_{gg} \frac{g^2_s}{4} G^a_{\mu\nu} \tilde{G}^a_{\mu\nu} \right],$$


$$\begin{split} \delta c_z &= \frac{1}{2}a_1 - 1\\ c_{z\square} &= \frac{m_Z^2 s_w^2}{e^2} \frac{\kappa_1}{(\Lambda_1)^2}\\ c_{zz} &= -\frac{2s_w^2 c_w^2}{e^2}a_2\\ \tilde{c}_{zz} &= -\frac{2s_w^2 c_w^2}{e^2}a_3\\ c_{gg} &= -\frac{1}{2\pi\alpha_s}a_2^{gg}\\ \tilde{c}_{gg} &= -\frac{1}{2\pi\alpha_s}a_3^{gg} \end{split}$$

Symmetries and more...

- Onshell Zγ and γγ couplings well constrained
- Custodial symmetry
- Consider g^{ww} = g^{zz}

5 independent HVV couplings

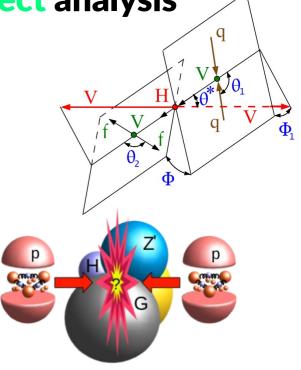
Or...

• Consider SU(2)×U(1) \rightarrow enforces relations between couplings:

$$\begin{split} g_1^{WW} &= \left(g_1^{ZZ}\right) \\ g_2^{WW} &= c_w^2 g_2^{ZZ} + s_w^2 g_2^{\gamma\gamma} + 2s_w c_w g_2^{Z\gamma}, \\ g_4^{WW} &= c_w^2 g_4^{ZZ} + s_w^2 g_4^{\gamma\gamma} + 2s_w c_w g_4^{Z\gamma}, \\ \frac{\kappa_1^{WW}}{(\Lambda_1^{WW})^2} (c_w^2 - s_w^2) &= \left(\frac{\kappa_1^{ZZ}}{(\Lambda_1^{ZZ})^2}, +2s_w^2 \frac{g_2^{\gamma\gamma} - g_2^{ZZ}}{M_Z^2} + 2\frac{s_w}{c_w} (c_w^2 - s_w^2) \frac{g_2^{\gamma\gamma}}{M_Z^2}, \\ \frac{\kappa_2^{Z\gamma}}{(\Lambda_1^{Z\gamma})^2} (c_w^2 - s_w^2) &= 2s_w c_w \left(\frac{\kappa_1^{ZZ}}{(\Lambda_1^{ZZ})^2} + \frac{g_2^{\gamma\gamma} - g_2^{ZZ}}{M_Z^2}\right) + 2(c_w^2 - s_w^2) \frac{g_2^{\gamma\gamma}}{M_Z^2}, \end{split}$$

4 independent HVV couplings

Phenomenology and experiment


- AC parametrization presented is the most general Lorentz invariant form for dim 4 and 6 operators
- Existing and new tools allow rotations from mass eigenstate basis to others

Necessary to perform an optimal and correct analysis

Use ME (MELA) or BDT discriminants that exploit all kinematic information to boost sensitivity

Use full detector simulation of anomalous couplings considered (JHUgen)

Techniques such as re-weighting solve the problem of simulating all the necessary AC contributions

Measuring the AC contributions

<u>2 types of results:</u>

Fractional AC contr. in signal strength:

Signal strength:

$$\mu_j = \sigma_j / \sigma_j^{\rm SM}$$

Effective fractional xsec:

$$f_{ai}^{\text{VV}} = \frac{|a_i^{\text{VV}}|^2 \,\alpha_{ii}^{(\text{dec})}}{\sum_j |a_j^{\text{VV}}|^2 \,\alpha_{jj}^{(\text{dec})}} \,\operatorname{sign}\left(\frac{a_i^{\text{VV}}}{a_1}\right)$$

Total width absorbed in signal strength

- Most systematics cancel in the ratio
- Bounded [-1,1]
- **Scan** $f_{a2}, f_{a3}, f_{\Lambda 1}...$

Interpretation in terms of Lagr. Coefficients:

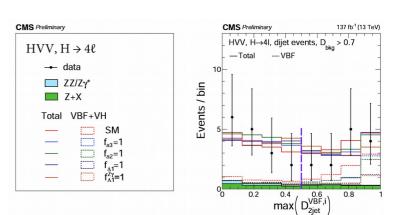
$$\sigma(i \to H \to f) \propto \frac{\left(\sum \alpha_{jk}^{(i)} a_j a_k\right) \left(\sum \alpha_{lm}^{(f)} a_l a_m\right)}{\Gamma_{\text{tot}}}$$

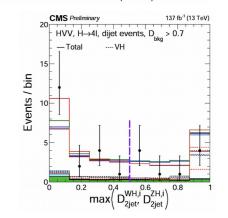
$$\Gamma_{\text{tot}} = \sum_f \Gamma_f = \Gamma_{\text{tot}}^{\text{SM}} \times \sum_f \left(\frac{\Gamma_f^{\text{SM}}}{\Gamma_{\text{tot}}^{\text{SM}}} \times \frac{\Gamma_f}{\Gamma_f^{\text{SM}}}\right) = \Gamma_{\text{tot}}^{\text{SM}} \times \sum_f \left(\mathcal{B}_f^{\text{SM}} \times \frac{R_f(\vec{g}_j)}{\rho_1}\right)$$

$$R_{ZZ/Z\gamma^*/\gamma^*\gamma^*} = \left(\frac{g_1^{ZZ}}{2}\right)^2 + 0.1695 \left(\kappa_1^{ZZ}\right)^2 + 0.09076 \left(g_2^{ZZ}\right)^2 + 0.03809 \left(g_4^{ZZ}\right)^2 + 0.8095 \left(\frac{g_1^{ZZ}}{2}\right) \kappa_1^{ZZ} + 0.5046 \left(\frac{g_1^{ZZ}}{2}\right) g_2^{ZZ} + 0.2092 \kappa_1^{ZZ} g_2^{ZZ} + 0.1023 \left(\kappa_2^{Z\gamma}\right)^2 + 0.1901 \left(\frac{g_1^{ZZ}}{2}\right) \kappa_2^{Z\gamma} + 0.07429 \kappa_1^{ZZ} \kappa_2^{Z\gamma} + 0.04710 g_2^{ZZ} \kappa_2^{Z}$$

- Anomalous contributions modify the total width!
- Interpret in couplings language

Event Selections and Observables

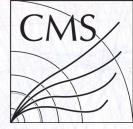



$Onshell \; H \to 4l \; analysis$

- Consider $2e2\mu$, 4μ and 4e Higgs decays
- Create categories rich in VBF / VH events
- Use MELA discr. to separate production mechanism and distinguish signal vs background
- Categorization discriminants dedicated to AC hypothesis to ensure optimal selection of events
- Specific categorization schemes for HVV and Hgg/Hff couplings

Observables and fits

- Create ME observables (MELA)
- Exploit production and decay information
- Exploit interference information
- Perform template likelihood fits
- Measure and interpreted to Lagrangian coefficients.



 $\frac{\mathcal{P}_{\textrm{sig}}\left(\boldsymbol{\Omega}\right)}{\mathcal{P}_{\textrm{sig}}\left(\boldsymbol{\Omega}\right)+\mathcal{P}_{\textrm{alt}}\left(\boldsymbol{\Omega}\right)}\,\text{'}$ $\mathcal{D}_{\mathrm{alt}}(\mathbf{\Omega}) =$ $rac{\mathcal{P}_{int}\left(\Omega
ight) }{2\sqrt{\mathcal{P}_{sig}\left(\Omega
ight) ~\mathcal{P}_{alt}\left(\Omega
ight) }}$ $\mathcal{D}_{\mathrm{int}}\left(\mathbf{\Omega}
ight) =$

Savvas Kyriacou

¹ θ, ί

CMS Experiment at LHC, CERN Data recorded: Thu Jun 28 14:00:31 2018 EDT Run/Event 318874 / 88897146 Lumi section: 54 Orbit/Crossing: 14097746 / 2821

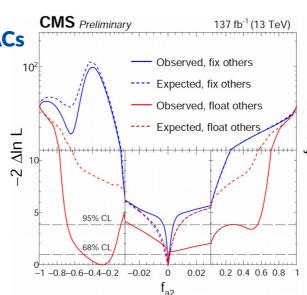
 $pp \rightarrow H \text{ jet jet } + X$ $\downarrow e^+e^-\mu^+\mu^-$

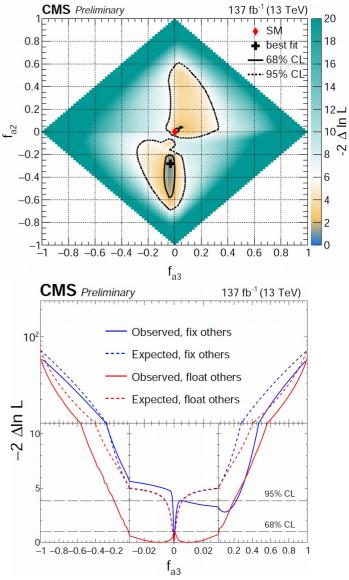
Savvas Kyriacou

ICHEP 2020

 e^+

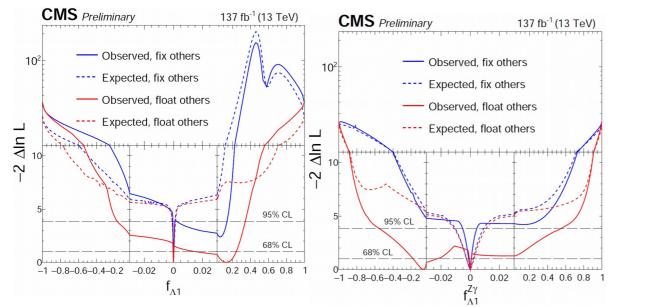
1et


e

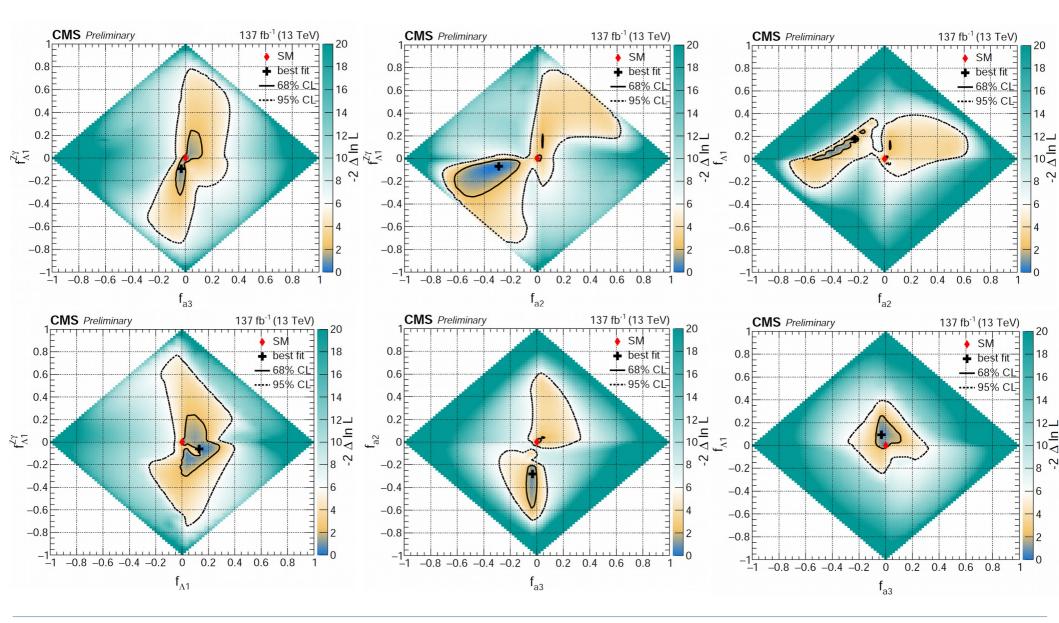

8

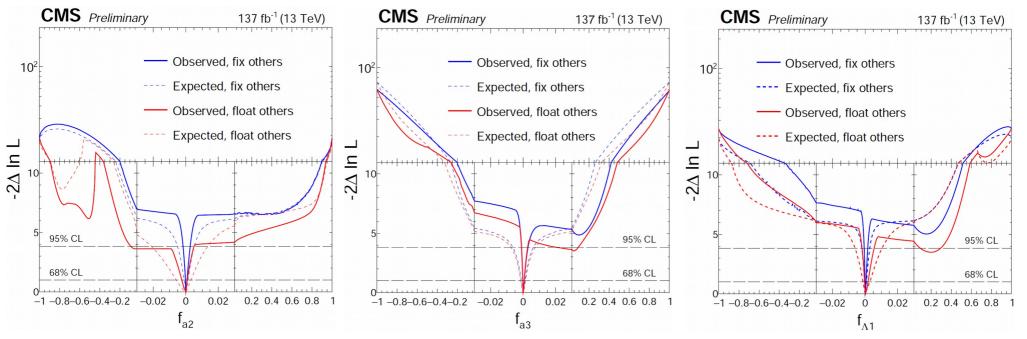
HVV couplings $H \rightarrow 4I$

3 types of scans:


- Single parameter scans with other ACs fixed
- Simultaneous scans of multiple ACs (floating/profiling)
- 2D scans (floating)
- Multiple minima, some away from 0
- Everything consistent with SM

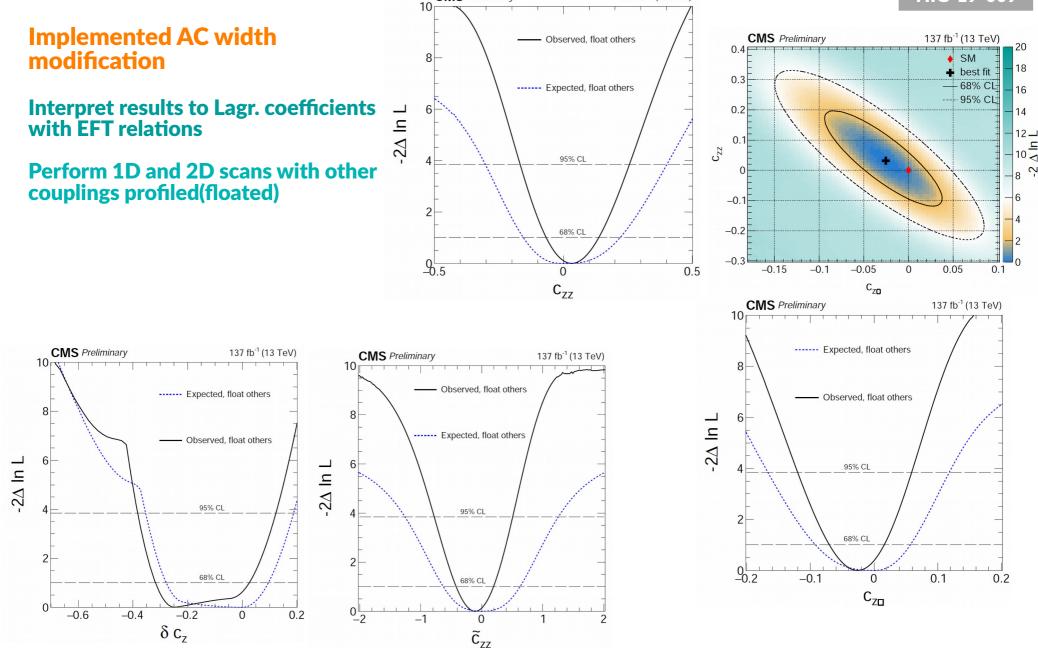
CMS


HIG-19-009


HVV couplings in $H \rightarrow 4I$

HVV couplings SU(2)xU(1)

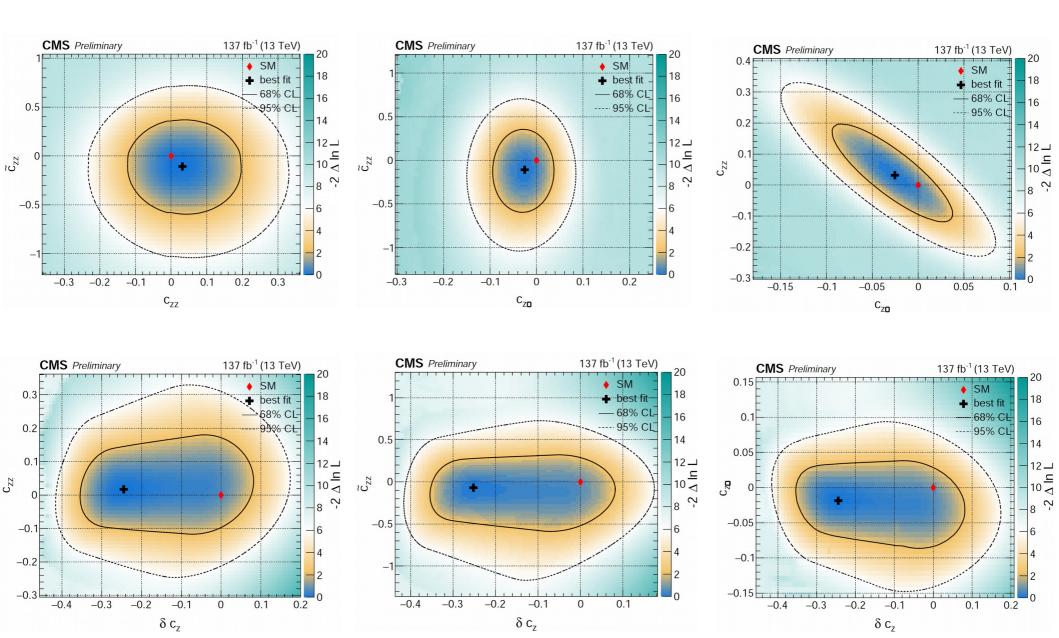
• Implement SU(2)XU(1) EFT relations


- Re-weight templates based on EFT
- Independent anomalous couplings reduce to 3
- Perform multi-parameter scans
- Stringent limits on f_{a3} , f_{a2} , $f_{\Lambda 1}$
- consistent with SM

Detailed numerical report of results in extra material section

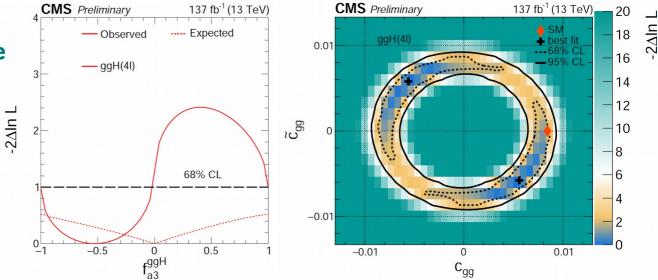
HVV couplings SU(2)xU(1)

2


CMS Preliminary

137 fb⁻¹ (13 TeV)

HVV couplings SU(2)xU(1)


Savvas Kyriacou

Hgg couplings with $H \rightarrow 4I$

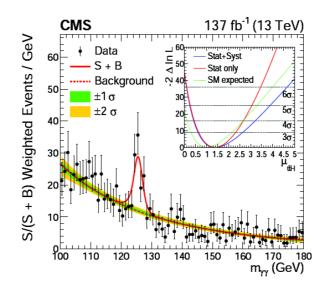
Use production vertex to measure Hff/Hgg couplings

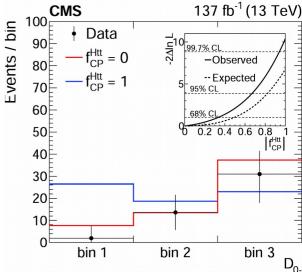
Measure cp sensitive f^{ggH}_{a3}

Interpret in terms of couplings

Hgg analysis show preference for maximal CP odd/even mixing

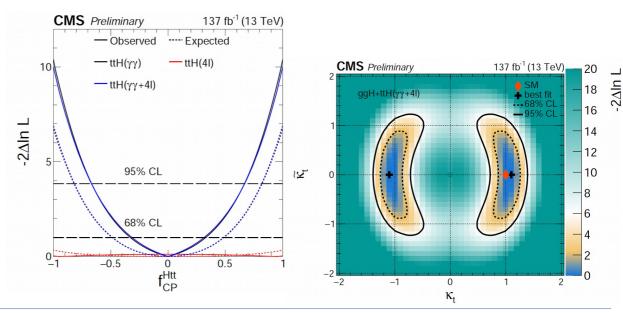
Parameter	Observed	Expected
f_{a3}^{ggH}	$-0.53^{+0.51}_{-0.47} \left[-1,1 ight]$	0±1[-1,1]

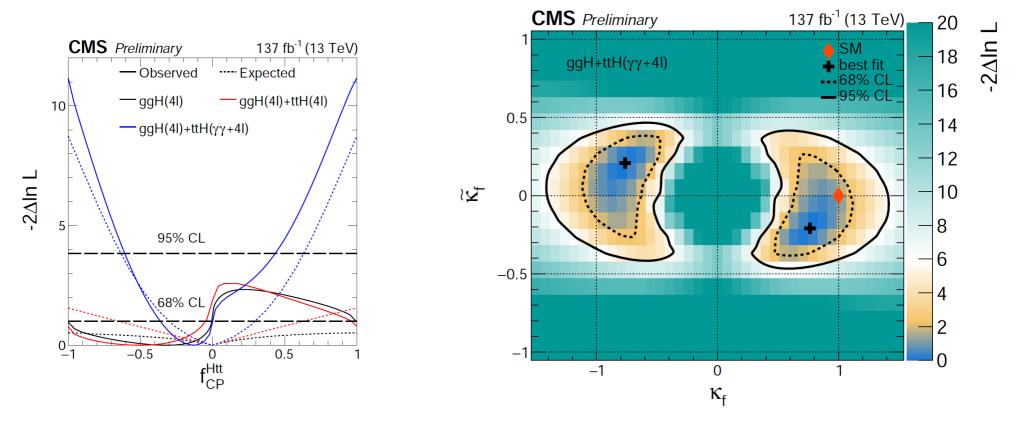

Htt couplings



Study CP structure with f^{Htt}_{CP} in: $H \rightarrow 4I$ $H \rightarrow \gamma\gamma$ and combine

 $H \rightarrow \gamma \gamma$ utilize BDT for D_{0-1}


Simultaneous fit of $m\gamma\gamma$ in 12 categories


Interpret as top couplings

 $f_{\rm CP}^{\rm Htt}$ 0.00 ± 0.31 [-0.67, 0.67]

Hff couplings in $H \rightarrow 4I$

Constrain Htt from ggH and ttH:

• In $H \rightarrow 4I$ only :

assume $\kappa_h = \kappa_f$ and for CP odd contributions also

• Combine $H \rightarrow 4I$ result and $H \rightarrow \gamma\gamma$ similar assumptions as in ttH combination

Detailed numerical report of results in extra material section

Offshell analysis with $H \rightarrow 4I$

CMS

- 95% CL

---- 68% CI

× Best Fit

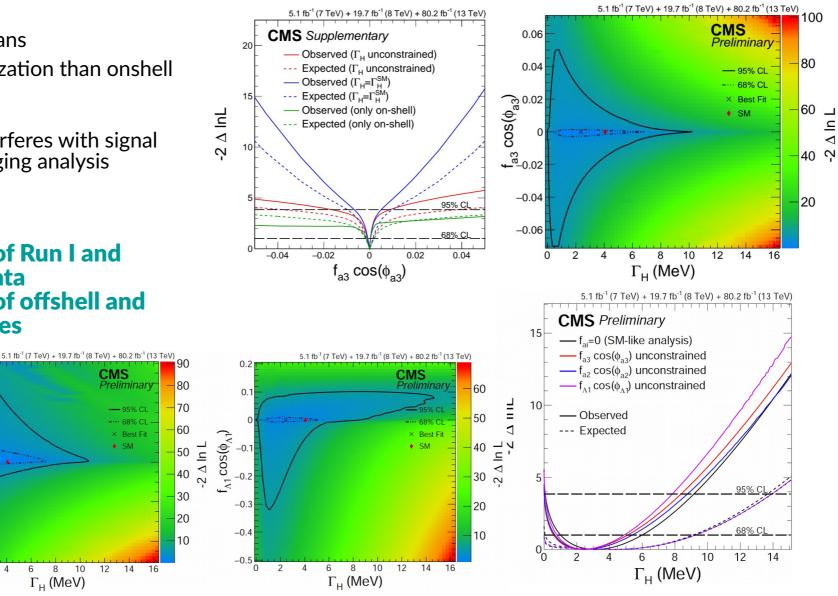
♦ SM

Г_н (MeV)

- AC can increase considerably the offshell signal yields
- Scan f_{a2} , f_{a3} , f_{A1}
- Individual AC scans
- Simpler categorization than onshell analysis
- Background interferes with signal \rightarrow more challenging analysis
- Combination of Run I and 2016+2017 data

0.04

0.02


-0.02

-0.04

0 2 4 6 8 10 12 14

 $f_{a2} cos(\phi_{a2})$

Combination of offshell and onshell analyses

Savvas Kyriacou

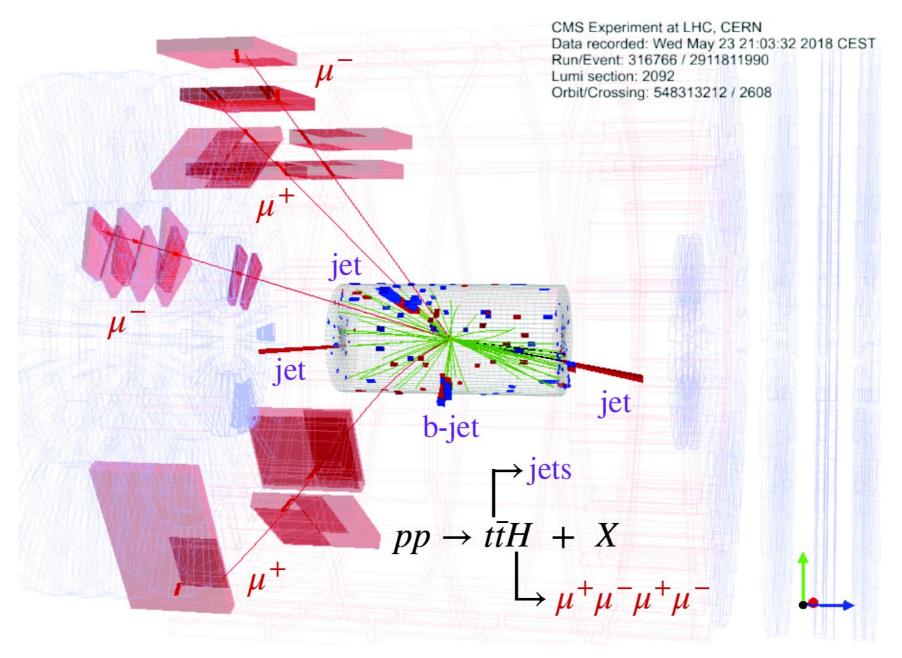
Conclusions

- Probing the Higgs anomalous couplings is of paramount importance for the LHC experiments
 - CMS investigates anomalous Higgs coupling measurements in multiple final states

- <u>Technically challenging analyses:</u>
 - Full simulation of all phenomena studied Exploit all available experimental information from decay and production Statistical tools allow simultaneous multi AC parameter scans
- Effective field theory
- Interpretation in terms of Lagrangian couplings
- Combined results across different final states

Channels	Coupling	Observed	Expected	Obs	erved cor	relation	
ggH	c _{gg} õ _{gg}	$\begin{array}{c} 0.0056\substack{+0.0025\\-0.0039}\\-0.0058\substack{+0.0037\\-0.0024}\end{array}$	$\begin{array}{c} 0.0084\substack{+0.0007\\-0.0084}\\ 0.0000\substack{+0.0085\\-0.0085}\end{array}$		1 +0.980	1	
tīH	$rac{\kappa_{ ext{t}}}{ ilde{\kappa}_{ ext{t}}}$	$1.06\substack{+0.14\\-0.18}\\0.00\substack{+0.76\\-0.72}$	$\begin{array}{c} 1.00\substack{+0.15\\-0.23}\\ 0.00\substack{+0.80\\-0.80}\end{array}$		1 0.000	1	
$t\bar{t}H + ggH$	$rac{\kappa_{\mathrm{f}}}{\tilde{\kappa}_{\mathrm{f}}}$	$\begin{array}{r} 0.76\substack{+0.23\\-0.21}\\-0.21\substack{+0.28\\-0.12}\end{array}$	$\begin{array}{c} 1.00\substack{+0.26\\-0.39}\\ 0.00\pm0.37\end{array}$		1 +0.745	1	
$VBF + VH + H \rightarrow 4\ell$	$\delta c_z \\ c_{zz} \\ c_z \\ \bar{c}_z \\ \bar{c}_{zz}$	$\begin{array}{r} -0.25\substack{+0.27\\-0.07}\\ 0.03\substack{+0.10\\-0.03\substack{+0.04\\-0.04}\\-0.11\substack{+0.30\\-0.31}\end{array}$	$\begin{array}{c} 0.00 \substack{+0.10 \\ -0.28} \\ 0.00 \substack{+0.22 \\ -0.16} \\ 0.00 \substack{+0.06 \\ -0.09} \\ 0.00 \substack{+0.63 \\ -0.63} \end{array}$	$1 \\ +0.144 \\ -0.186 \\ +0.077$	1 -0.847 -0.016	1 +0.009	1

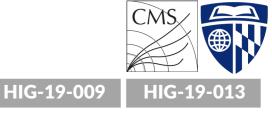
٠


References:

- Andrei V. Gritsan et al., "New features in the JHU generator framework: constraining Higgs boson properties from onshell and off-shell production", arXiv:2002.09888
- The CMS collaboration,"Measurements of properties of the Higgs boson in the four-lepton final state in proton-proton collisions at √s=13 TeV", https://cds.cern.ch/record/2668684
- A. M. Sirunyan et al., "Measurements of Higgs boson properties from on-shell and off-shell production in the four-lepton final state", **Phys. Rev. D 99, 112003**
- A. M. Sirunyan et al., "Measurements of tt production and the CP structure of the Yukawa interaction between the Higgs boson and top quark in the diphoton decay channel", *arXiv:2003.10866*

Extra material

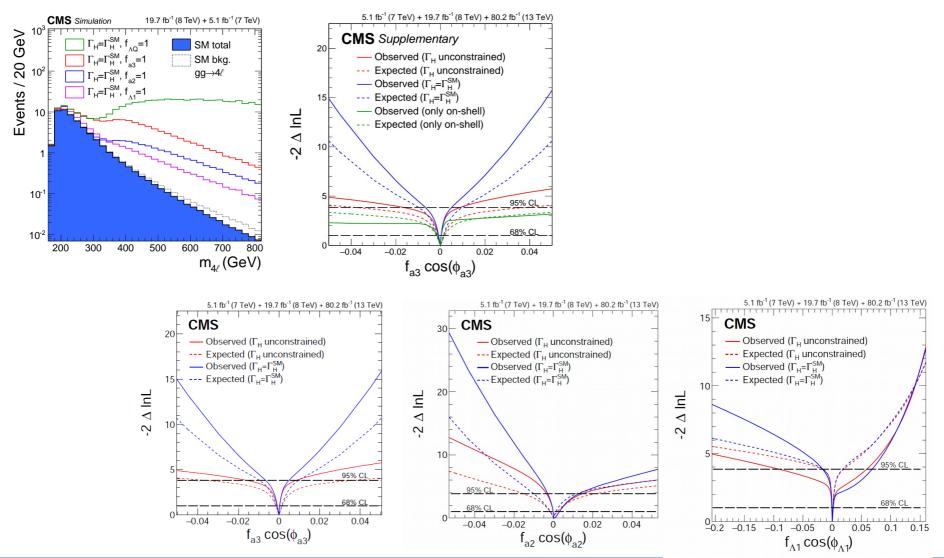
ttH event display



Summary of HVV/Hff results

Parameter	Scenario		Observed	Expected
— f _{a3} —	Approach 1 $f_{a2} = f_{\Lambda 1} = f_{\Lambda 1}^{Z\gamma} = 0$ Approach 1 float $f_{a2}, f_{\Lambda 1}, f_{\Lambda 1}^{Z\gamma}$ Approach 2 float $f_{a2}, f_{\Lambda 1}$	best fit 68% CL 95% CL best fit 68% CL 95% CL 95% CL 95% CL	$\begin{array}{l} 0.00000\\ [-0.00017, 0.00017]\\ [-0.0010, 0.0038] \cup [0.01, 0.24]\\ \pm 0.010\\ [-0.042, 0.034]\\ [-0.20, 0.20]\\ 0.00005\\ [-0.00013, 0.00066]\\ [-0.0010, 0.0028] \cup [0.024, 0.092] \end{array}$	0.00000 [-0.0081, 0.00081] [-0.0056, 0.0056] 0.00000 [-0.0088, 0.00088] [-0.0057, 0.0057] 0.0000 [-0.0012, 0.0012] [-0.0074, 0.0074]
f _{a2}	Approach 1 $f_{a3} = f_{\Lambda 1} = f_{\Lambda 1}^{Z\gamma} = 0$ Approach 1 float $f_{a3}, f_{\Lambda 1}, f_{\Lambda 1}^{Z\gamma}$ Approach 2 float $f_{a3}, f_{\Lambda 1}$	best fit 68% CL 95% CL best fit 68% CL 95% CL 95% CL 95% CL	$\begin{array}{l} 0.00000\\ [-0.00031, 0.00098]\\ [-0.0033, 0.0039]\\ -0.29\\ [-0.50, -0.18] \cup [-0.00024, 0.00052]\\ [-0.68, -0.05] \cup [-0.027, 0.185]\\ & \cup [0.38, 0.55]\\ -0.0001\\ [-0.0024, 0.0008]\\ [-0.0209, 0.0133]\end{array}$	$\begin{array}{l} 0.0000 \\ [-0.0012, 0.0013] \\ [-0.0095, 0.0081] \\ 0.0000 \\ [-0.0018, +0.0013] \\ [-0.0106, 0.0081] \\ 0.0000 \\ [-0.0053, 0.0033] \\ [-0.0869, 0.0055] \end{array}$
— f _{A1} —	Approach 1 $f_{a3} = f_{a2} = f_{\Lambda 1}^{Z\gamma} = 0$ Approach 1 float $f_{a3}, f_{a2}, f_{\Lambda 1}^{Z\gamma}$ Approach 2 float f_{a3}, f_{a2}	best fit 68% CL 95% CL best fit 68% CL 95% CL 95% CL 95% CL	$\begin{array}{l} 0.00000 \\ [-0.00009, 0.00022] \\ [-0.00036, 0.00110] \cup [0.002, 0.135] \\ 0.13 \\ [-0.00012, 0.00015] \cup [0.02, 0.24] \\ [-0.16, -0.01] \cup [-0.0056, 0.3423] \\ 0.00019 \\ [-0.00017, 0.00168] \\ [-0.0019, 0.0055] \cup [0.10, 0.29] \end{array}$	$\begin{array}{l} 0.00000 \\ [-0.00016, 0.00025] \\ [-0.00081, 0.00112] \\ 0.00000 \\ [-0.00017, 0.00036] \\ [-0.00089, 0.00144] \\ 0.0000 \\ [-0.0012, 0.0029] \\ [-0.0060, 0.0103] \end{array}$
$-f_{\Lambda 1}^{Z\gamma}-$	Approach 1 $f_{a3} = f_{a2} = f_{\Lambda 1} = 0$ Approach 1 float $f_{a3}, f_{a2}, f_{\Lambda 1}$	best fit 68% CL 95% CL best fit 68% CL 95% CL	$\begin{array}{l} -0.0004 \\ [-0.0010, 0.0014] \\ [-0.0063, 0.0060] \cup [0.05, 0.21] \\ -0.06 \\ [-0.18, -0.02] \cup [-0.00049, 0.00058] \\ [-0.53, 0.52] \end{array}$	0.0000 [-0.0026, 0.0020] [-0.0102, 0.0091] 0.0000 [-0.0026, 0.0025] [-0.011, 0.011]

Hgg/Hff results



Parameter	Scenario	Observed	Expected
$f_{\rm CP}^{\rm Htt}$	$\begin{array}{l} t\bar{t}H \ (H \rightarrow 4\ell) \\ t\bar{t}H \ (H \rightarrow \gamma\gamma) \ [26] \\ t\bar{t}H \ (H \rightarrow 4\ell \And \gamma\gamma) \\ ggH \ (H \rightarrow 4\ell) \\ ggH \And t\bar{t}H \ (H \rightarrow 4\ell) \\ ggH \And t\bar{t}H \ (H \rightarrow 4\ell) \\ ggH \And t\bar{t}H \ (H \rightarrow 4\ell \And \gamma\gamma) \end{array}$	$\begin{array}{c} \pm 1 \mp 2 \ [-1,1] \\ 0.00 \pm 0.33 \ [-0.67,0.67] \\ 0.00 \pm 0.31 \ [-0.67,0.67] \\ -0.32^{+0.31}_{-0.68} \ [-1,1] \\ -0.50^{+0.45}_{-0.50} \ [-1,1] \\ -0.13^{+0.13}_{-0.24} \ [-0.61,0.43] \end{array}$	$\begin{array}{c} 0\pm1\ [-1,1]\\ 0.00\pm0.49\ [-0.82,0.82]\\ 0.00\pm0.48\ [-0.82,0.82]\\ 0\pm1\ [-1,1]\\ 0.00\pm0.65\ [-1,1]\\ 0.00\pm0.29\ [-0.63,0.63] \end{array}$

$H \rightarrow 4l \text{ off-shell}$

anomalous couplings : → increase the number of off-shell events

Savvas Kyriacou