#### Higgs quartic coupling at a Muon Collider

#### Mauro Chiesa

CNRS, LAPTh, Annecy

IRN@ZOOM, November 6th, 2020

#### based on JHEP 09 (2020) 098 [arXiv:2003.13628]

in collaboration with Luca Mantani, Fabio Maltoni, Barbara Mele, Fulvio Piccinini and Xiaoran Zhao

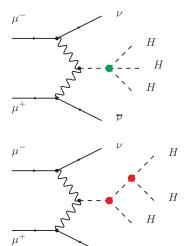
#### H self-couplings measurement: future colliders (HHHH)

- the proposed future colliders can put strong constraints on the triple Higgs coupling  $\delta_3$ :  $\pm 10\%$  1- $\sigma$  bound at CLIC and ILC,  $\pm 5\%$  at FCC
- the bounds on the quartic couplings  $\delta_4$  are very loose (68% CL)

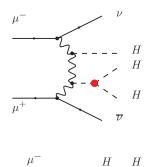
• ILC: ~ 
$$[-10, +10]$$
 (±1000%!)

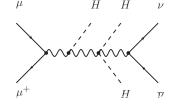
• CLIC: 
$$\sim [-5, +5]$$

FCC: 
$$\sim [-5, +15]$$
, from  $pp \rightarrow HHH$ 

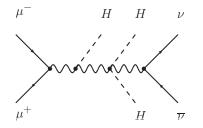

• FCC:  $\sim [-2,+4]$ , from  $pp \rightarrow HH$ 

I will focus on the sensitivity of the muon collider to the quartic coupling


#### Spoiler:


under (reasonable) assumptions on the energy and the luminosity, the muon collider can do a pretty good job in constraining the quartic Higgs coupling

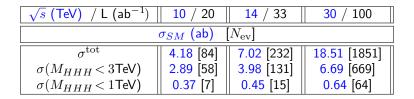
# $\overline{\mu^+} \overline{\mu^-} \to HHH \nu \overline{\nu}$




 $\overline{\nu}$ 






#### Details of the calculations



- *H* produced on shell
- $H \rightarrow b\overline{b}$  (on-shell) decays added at the LHE level
- $\Gamma_W = \Gamma_Z = \Gamma_H = 0$  to avoid issues with gauge invariance
- technical cut  $M(\nu\overline{\nu}) > 150$  GeV
- $\sigma$  and  $d\sigma$  computed with <code>WHIZARD</code> at LO
- all results cross-checked with MadGraph and an independent calculation by X. Zhao

### $\mu^+\mu^- \rightarrow HHH\nu\overline{\nu}$ : SM Higgs couplings (energy)

| $\sqrt{s}$ (TeV) / L (ab <sup>-1</sup> ) | 1.5 / 1.2 | 3 / 4.4  | 6 / 12    |  |  |
|------------------------------------------|-----------|----------|-----------|--|--|
| $\sigma_{SM}$ (ab) $[N_{ m ev}]$         |           |          |           |  |  |
| $\sigma^{ m tot}$                        | 0.03 [0]  | 0.31 [1] | 1.65 [20] |  |  |
| $\sigma(M_{HHH} < 3 \text{TeV})$         | 0.03 [0]  | 0.31 [1] | 1.47 [18] |  |  |
| $\sigma(M_{HHH} < 1 \text{TeV})$         | 0.02 [0]  | 0.12 [1] | 0.26 [3]  |  |  |



 $\sigma$  increases with  $\sqrt{s}$ 

## $\mu^+\mu^- \rightarrow HHH\nu\overline{\nu}$ : SM Higgs couplings (luminosity)

| $\sqrt{s}$ (TeV) / L (ab <sup>-1</sup> ) | 1.5 / 1.2 | 3 / 4.4  | 6 / 12    |  |
|------------------------------------------|-----------|----------|-----------|--|
| $\sigma_{SM}$ (ab) $[N_{ m ev}]$         |           |          |           |  |
| $\sigma^{ m tot}$                        | 0.03 [0]  | 0.31 [1] | 1.65 [20] |  |
| $\sigma(M_{HHH} < 3$ TeV)                | 0.03 [0]  | 0.31 [1] | 1.47 [18] |  |
| $\sigma(M_{HHH} < 1 \text{TeV})$         | 0.02 [0]  | 0.12 [1] | 0.26 [3]  |  |

| $\sqrt{s}$ (TeV) / L (ab <sup>-1</sup> ) | 10 / 20            | 14 / 33       | 30 / 100     |
|------------------------------------------|--------------------|---------------|--------------|
|                                          | $\sigma_{SM}$ (ab) | $[N_{ m ev}]$ |              |
| $\sigma^{ m tot}$                        | 4.18 [84]          | 7.02 [232]    | 18.51 [1851] |
| $\sigma(M_{HHH} < 3 \text{TeV})$         | 2.89 [58]          | 3.98 [131]    | 6.69 [669]   |
| $\sigma(M_{HHH} < 1 \text{TeV})$         | 0.37 [7]           | 0.45 [15]     | 0.64 [64]    |

The lower energy setups (1.5 and 3 TeV) do not have enough events to study the quartic Higgs self coupling

## $\mu^+\mu^- \rightarrow HHH\nu\overline{\nu}$ : SM Higgs couplings (luminosity)

 $\blacksquare$  the luminosities assumed for  $\sqrt{s}=1.5, 3, 6, 14~{\rm TeV}$  are based on MAP studies

V. Shiltsev FERMILAB-FN\_1083-AD-APC,

talks by D. Shulte and M. Palmer https://indico.cern.ch/event/847002/

• at  $\sqrt{s} = 10, 30$  TeV, the luminosity is fixed by (see arXiv:1910.06150) Luminosity:

$$L \gtrsim \frac{5 \text{ years}}{\text{time}} \left( \frac{\sqrt{s_{\mu}}}{10 \text{ TeV}} \right)^2 2 \cdot 10^{35} \text{ cm}^{-2} \text{s}^{-1}$$

Set by asking for 100K SM "hard" SM pair-production events.

 for the 10 and 30 TeV setups, it might be that higher luminosity could be achieved

#### Deviations from SM Higgs couplings

$$\mathcal{L} = -\frac{1}{2}M_{H}^{2}H^{2} - \left(1 + \delta_{3}\right)\frac{M_{H}^{2}}{2v}H^{3} - \left(1 + \delta_{4}\right)\frac{M_{H}^{2}}{8v^{2}}H^{4}$$

We consider 3 different scenarios:

**1**  $\delta_3 = 0$ ,  $\delta_4$  arbitrary

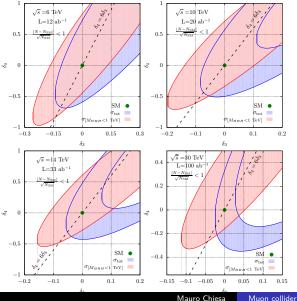
## **2** $\delta_3$ arbitrary, $\delta_4 = 6\delta_3$ (well behaved SMEFT)

S. Borowka et al. arXiv:1811.12366

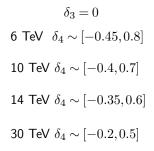
#### $\mathbf{3}$ $\delta_3$ arbitrary and $\delta_4$ arbitrary

## Sensitivity to $\delta_3$ and $\delta_4$

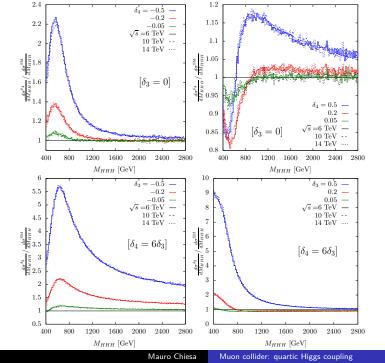
No background process considered:

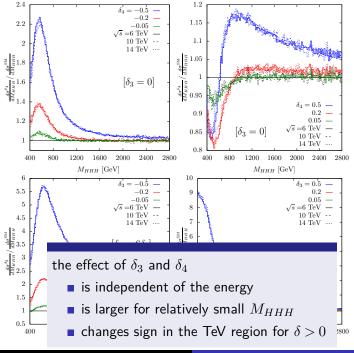

we quantify the sensitivity in terms of standard deviations from the SM expectation

$$\frac{|N - N_{\rm SM}|}{\sqrt{N_{\rm SM}}}$$

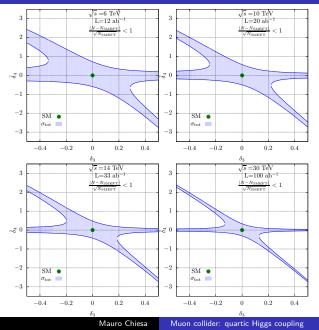

#### Remarks

- no background is considered, but the environment should be rather clean
- no branching ratio is applied, but if the environment is clean enough all the main decay channels should be visible
- (almost) no optimization based on kinematics is performed, so there is room for improvement

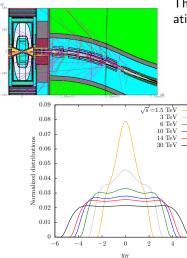

#### Sensitivity to $\delta_3$ and $\delta_4$ (small $\delta_3$ )




no cuts
 *M*<sub>HHH</sub> < 1 TeV</li>

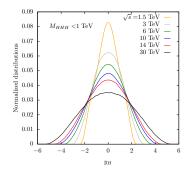



Muon collider: quartic Higgs coupling



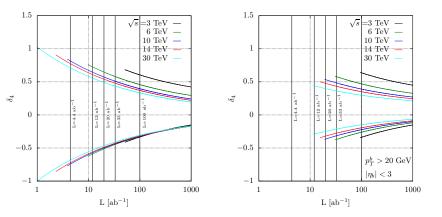



# Sensitivity to $\tilde{\delta}_4$ (deviation from SMEFT)




#### Remark on detector acceptance (1)




The detector must be shielded from the beam radiation

- 5-10 degrees blind spot in the forward region for  $\sqrt{s}=3~{\rm TeV}$
- angle could be reduced at higher energies



6

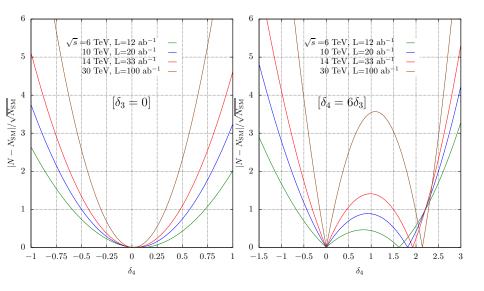
#### Remark on detector acceptance (2)



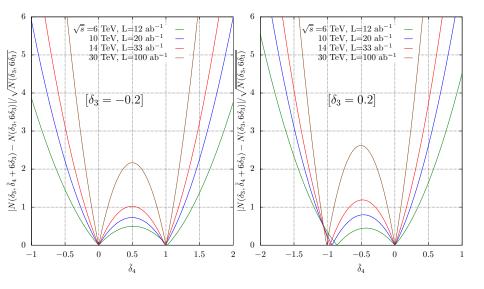
- only geometric acceptance considered (no BR applied)
- sensitivity increases because the SM production is forward, the BSM central

#### Conclusions

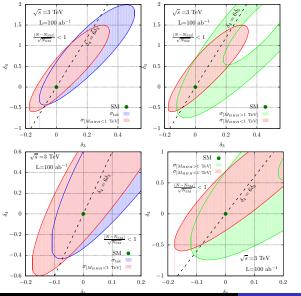
- we studied the sensitivity of the muon collider to the Higgs quartic coupling by considering the process  $\mu^+\mu^- \to HHH\nu\overline{\nu}$
- no background was considered
- (almost) no optimization based on kinematics was performed


|  | the sensitivity | increases | with | $\sqrt{s}$ | and/ | or the | luminosity |
|--|-----------------|-----------|------|------------|------|--------|------------|
|--|-----------------|-----------|------|------------|------|--------|------------|

|                  | 5                     | v /                                | ,                           |
|------------------|-----------------------|------------------------------------|-----------------------------|
| $\sqrt{s}$ [TeV] | L [ab <sup>-1</sup> ] | $\delta_4$ (arbitrary $\delta_3$ ) | $\delta_4 \ (\delta_3 = 0)$ |
| 6                | 12                    | [-1,1.7]                           | [-0.45,0.8]                 |
| 10               | 20                    | [-0.7,1.55]                        | [-0.4,0.7]                  |
| 14               | 33                    | [-0.55,1.4]                        | [-0.35,0.6]                 |
| 30               | 100                   | [-0.35,1.2]                        | [-0.2,0.5]                  |


 under (reasonable) assumptions on the energy and the luminosity, the muon collider can do a pretty good job in constraining the quartic Higgs coupling

# Backup slides


#### Sensitivity to $\delta_3$ and $\delta_4$



# Sensitivity to $\tilde{\delta}_4$ (deviation from SMEFT)



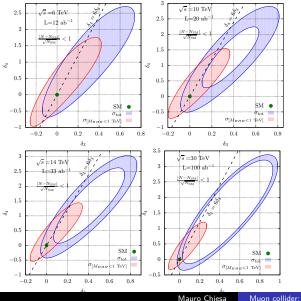
## Sensitivity to $\delta_3$ and $\delta_4$ ( $\sqrt{s} = 3$ TeV, L = 100 ab<sup>-1</sup>)



#### no cuts

- $M_{HHH} < 1 \text{ TeV}$
- $\blacksquare \ M_{HHH} > 1 \ {\rm TeV}$

$$\delta_4 \sim [-0.6, 1.5]$$

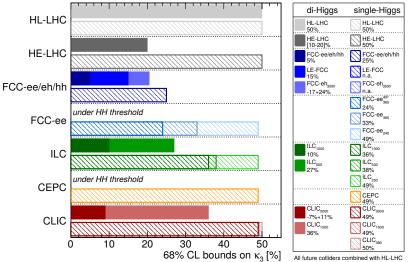

if  $\delta_3 = 0$ 

 $\delta_4 \sim [-0.3, 0.65]$ 

Using 20 times the expected luminosity!

Mauro Chiesa Muon coll

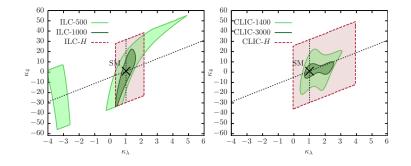
#### Sensitivity to $\delta_3$ and $\delta_4$ (arbitrary $\delta_3$ )




no cuts  $M_{HHH} < 1 \text{ TeV}$ 

$$\begin{split} \delta_3 &= 0 \\ 6 \ \text{TeV} \ \ \delta_4 &\sim [-0.1, 1.7] \\ 10 \ \text{TeV} \ \ \delta_4 &\sim [-0.7, 1.55] \\ 14 \ \text{TeV} \ \ \delta_4 &\sim [-0.55, 1.4] \\ 30 \ \text{TeV} \ \ \delta_4 &\sim [-0.35, 1.2] \end{split}$$

- stronger constraints on negative  $\delta s$
- constraints on positive  $\delta$ s improve with the cut  $M_{HHH} < 1$  TeV (provided that the cross section after the cut is large enough)
- $\blacksquare$  the bounds improve at large  $\sqrt{s}$  because the cross section increases
- the most interesting region is  $\delta_3 \sim 0$ , as bounds on  $\delta_3$  can be obtained form other processes (i.e.  $\mu^+\mu^- \rightarrow HH\nu\overline{\nu}$ ). It is reasonable to assume that such bounds will be competitive or stronger than the ones form linear colliders
- if  $\delta_3 \neq 0$ , one can constrain possible deviations from the SMEFT expectation for  $\delta_4$ :  $\tilde{\delta}_4 = \delta_4 6\delta_3$

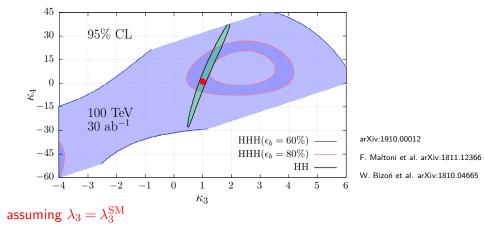

### H self-couplings measurement: future colliders (HHH)



Higgs@FC WG September 2019

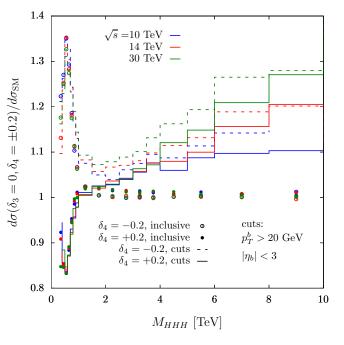
arXiv:1910.00012

#### H self-couplings measurement: future colliders (HHHH)




| Process                      | $\lambda_3$ | $\lambda_4$ |
|------------------------------|-------------|-------------|
| $ZH$ , $v_e \bar{v}_e H$     | one-loop    | two-loop    |
| $ZHH$ , $v_e \bar{v}_e HH$   | tree        | one-loop    |
| $ZHHH$ , $v_e \bar{v}_e HHH$ | tree        | tree        |

assuming  $\lambda_3 = \lambda_3^{SM}$ quartic coupling constrained in  $\pm \sim 10$  at ILC and  $\pm \sim 5$  at CLIC


arXiv:1910.00012, F. Maltoni et al. arXiv:1802.07616, T. Liu et al. arXiv:1803.04359

## H self-couplings measurement: future colliders (HHHH)



 $\lambda_4$  constrained in  $\sim [-5,15]$  at 68% CL from  $pp \to HHH$ 

 $\lambda_4$  constrained in  $\sim [-2,4]~$  at 68% CL from  $pp \to HH~$ 

