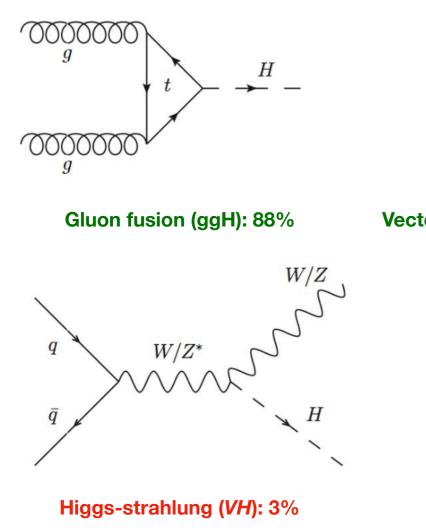
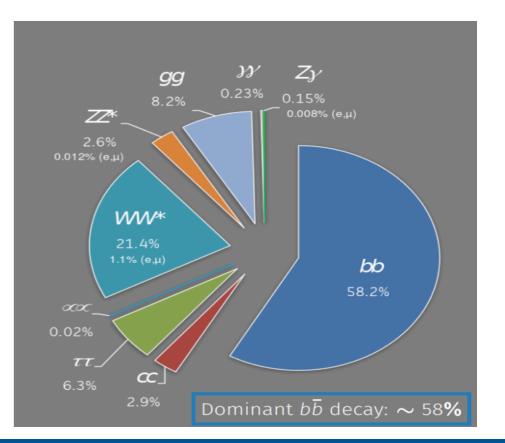


Measurements of WH and ZH production in the $H \rightarrow bb$ decay channel in *pp* collisions at 13 TeV with the ATLAS detector


Konie Al Khoury

IRN Terascale @ZOOM 6th of November, 2020

Higgs boson at the LHC



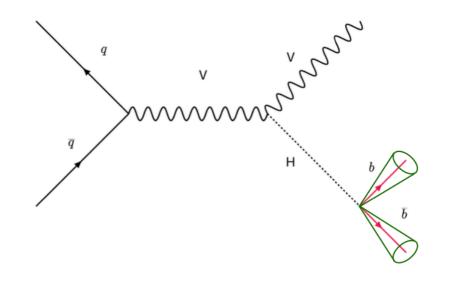
0000000

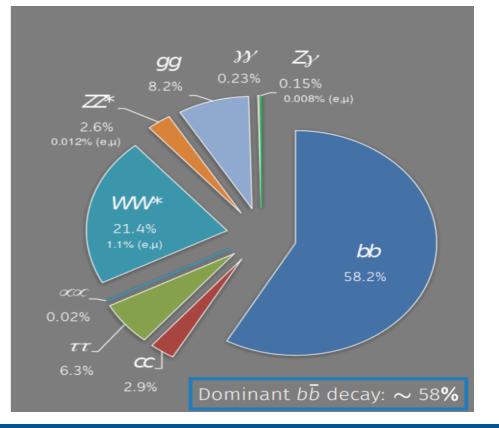
0000000

Top fusion (ttH): 1%

- The Higgs boson has 4 main production modes at the LHC
 - Focusing on the VH production mode
- Many decay modes accessible at the LHC
 - Decay to *b*-quarks is the most dominant with BR~58%

- Study the coupling of the Higgs boson to other particles
 - To assess the compatibility with the Standard Model (or beyond)
 - To bring additional constraints when measured in different channels

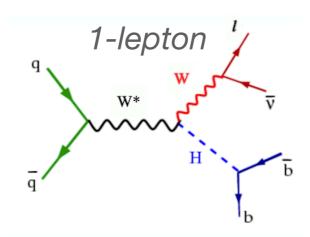

H

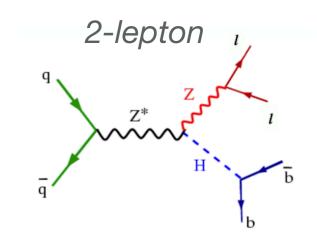

 \overline{t}

ATLAS Motivations for measuring VH, $H \rightarrow bb$

- $H \rightarrow bb$ decay:
 - Allows to measure the coupling of the Higgs boson to *b*-quarks
 - Cannot be measured inclusively: Measured in the VH production mode
- *VH* (*WH*/*ZH*) production with leptonic V decays:
 - For efficient trigger and multi-jet background suppression
 - Interesting to measure the Higgs boson coupling to vector boson at high energies
 - The most sensitive channel to measure $H \rightarrow bb$ decay

06/11/2020

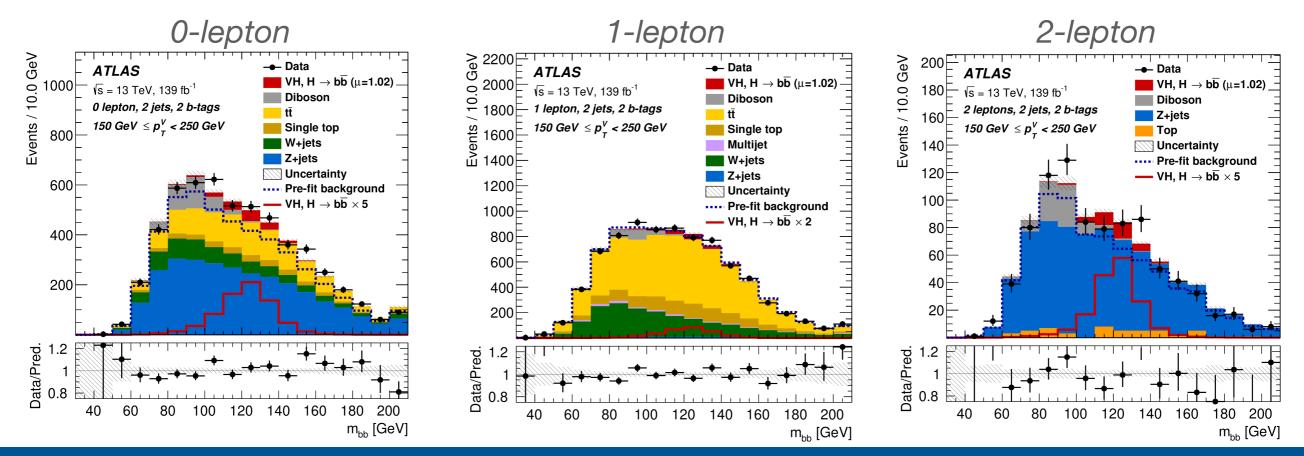



Analysis Strategy

- Analysing 139 fb⁻¹ of data collected by ATLAS at 13TeV during Run-2
 - Focus in this talk on the resolved analysis: arXiv:2007.02873
 - Similar analysis in boosted topology: **arXiv:2008.02508**
- 3 channels depending on the number of charged lepton (e or μ) in the final state
- Event selection to reject background events
- Event categorisation into signal and control regions
- Multivariate analysis to increase sensitivity
- Two cross-check analyses to validate the results: di-jet mass and diboson analyses
- A binned likelihood fit performed to measure the signal

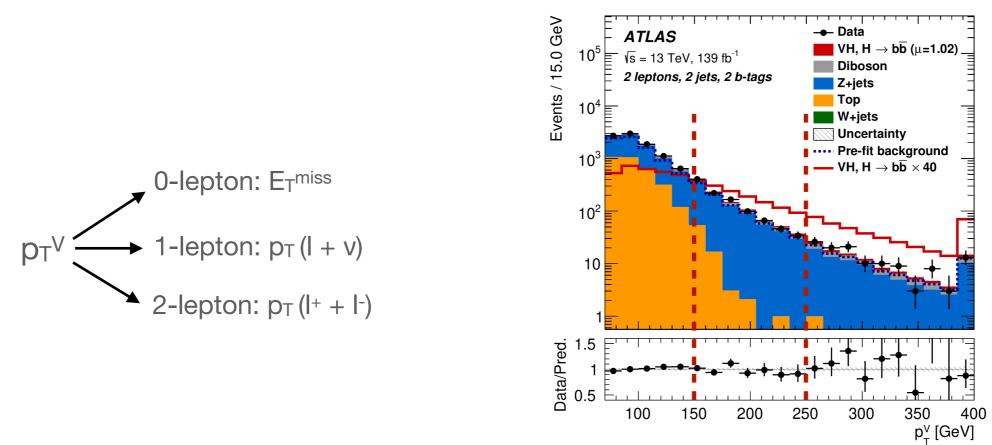
Event Selection

- Selecting events with either 2 jets or 3 jets (>= 3 jets in the 2-lepton channel only)
- Selection of exactly 2 *b*-jets events (~70% efficiency) using *b*-tagging
- Selection cuts optimised in the three channels to reject background events

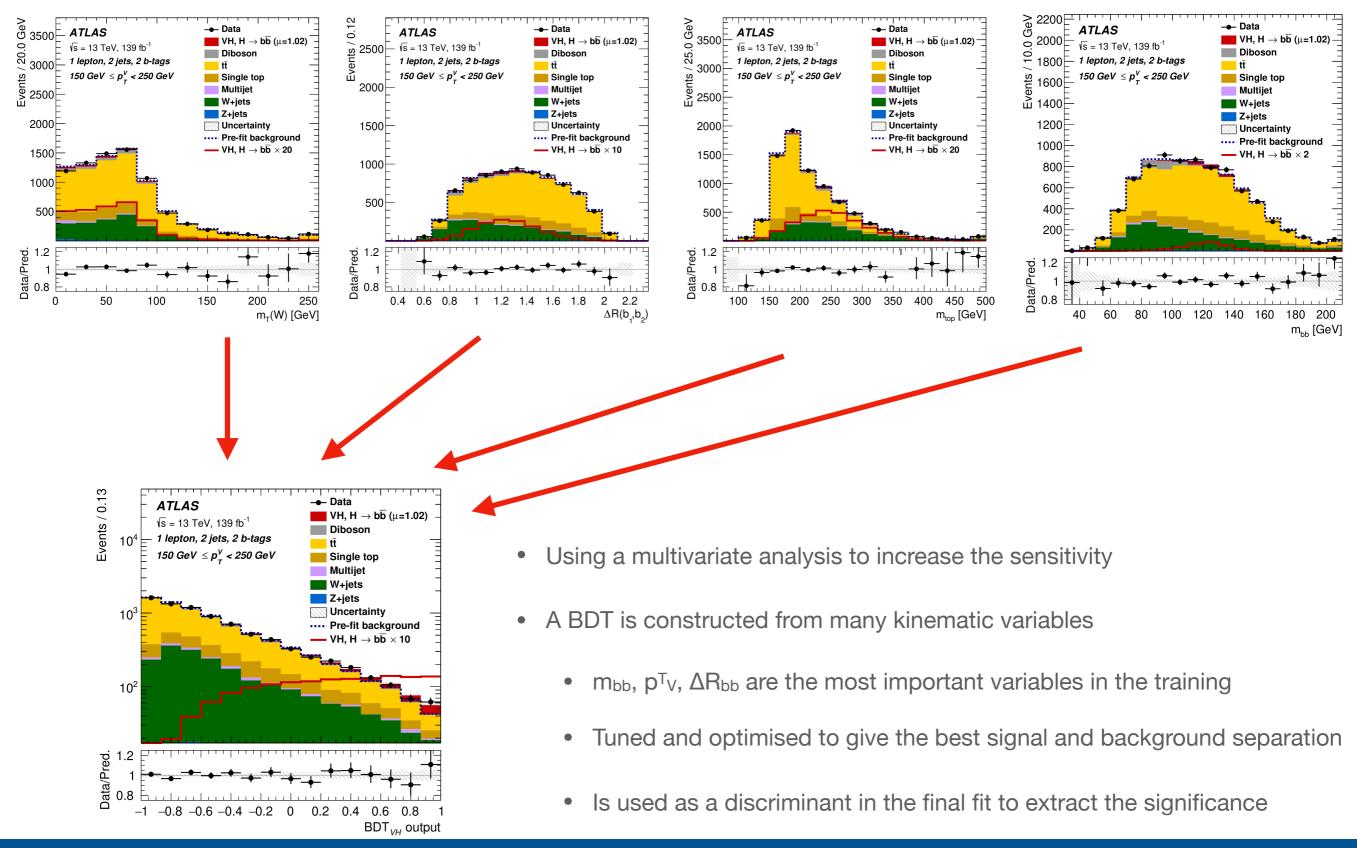

0-lepton	1-lepton	2-lepton
	Common cuts	
• Le	ading (sub-leading) jet p _T >45 (20) GeV	
• Se	lection of events with exactly 2 <i>b</i> -jets using <i>b</i> -	tagging
	Cuts on the reconstructed vector b	ooson
MET trigger	Single lepton or MET trigger	 Single lepton trigger
0 isolated lepton	 1 isolated lepton 	2 isolated lepton
		• 81 GeV <m⊫< 101="" gev<="" td=""></m⊫<>
		 Leptons of opposite charges for Z(→µµ)H sub-channel
(Cuts to reduce QCD multi-jet backg	ground
Anti-QCD angular cuts	 MET > 30GeV in W(→ev)H sub- channel to reduce multi-jet background 	
Konie Al Khoury, INR @ZOOM	5	06/11/2020

Background composition

- Use state-of-the-art Monte Carlo generators to model dominant backgrounds
 - W+jets (Sherpa 2.2.1): dominant in the 0- and 1-lepton channels
 - **Z+jets (Sherpa 2.2.1):** dominant in the 0- and 2-lepton channels
 - ttbar and single-top (PowhegPythia8): dominant in the 0- and 1-lepton channels
 - Data-driven method used to estimate the top background in the 2-lepton channel
 - Diboson (Sherpa 2.2.1): present in the 3 channels at lower mbb
- Multijet: Small contribution in the 1-lepton channel estimated using data-driven template fit method



Topology of the signal


- Signal has a harder p_T^V spectrum than backgrounds
 - Improved sensitivity at high p_T^V
 - Motivation to split the spectrum into bins of p_TV:
 - $75 \text{GeV} < p_T \vee < 150 \text{GeV}$ in the 2-lepton channel
 - $150 \text{GeV} < p_T^{V} < 250 \text{GeV}$ and $p_T^{V} > 250 \text{GeV}$ in all three lepton channels
- Jets are more collimated at high p_T^V : $\Delta R_{bb} \sim 2m_{bb} / p_T^V$
- p_T^V is a very important variable in the analysis: used in the BDT training and for the event categorisation

Multivariate Analysis (MVA)

Konie Al Khoury, INR @ZOOM

Events categorisation

∆ R(b₁,b₂) 5.2

2

1.5

0.5

150

ATLAS Simulation

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

250

300

200

1 lepton, 2 jet, 2 b-tags $qq \rightarrow WH \rightarrow lvb\overline{b}$

High $\triangle R CR$

SR

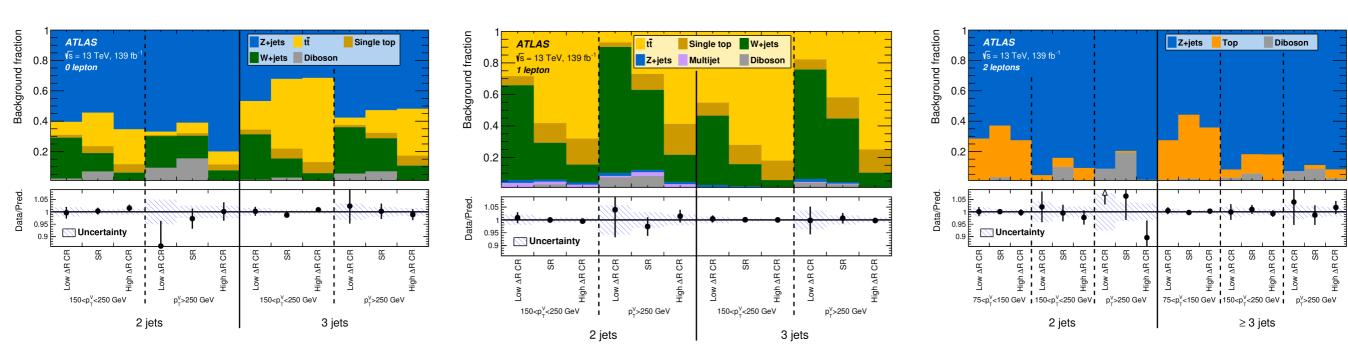
Low $\triangle \mathbf{R} \ \mathbf{C} \mathbf{R}$

350

400

Yield

0.8


-0.6

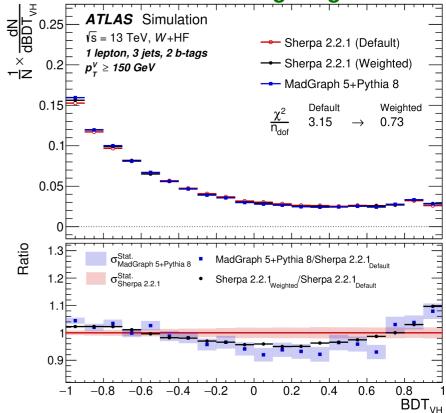
0.4

0.2

450 500 p^V_T [GeV]

- Use 2 continuous cuts in the ΔR_{bb}-p_T^V plane to create the Signal Region (SR), the Low and High ΔR Control Regions (CRs)
- Defined from the signal distribution to have:
 - SRs with high S/B ratio
 - CRs rich in backgrounds with low signal acceptance
- The analysis includes 14 signal regions and 28 control regions where:
 - The BDT_VH, m_{bb} or the BDT_VZ shapes are used in the SR
 - The yields are used in the CRs

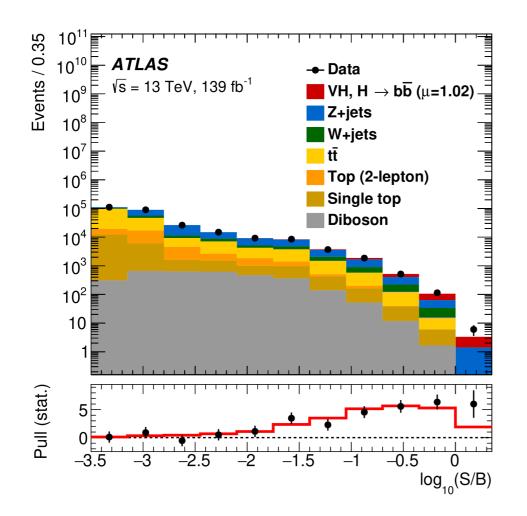
Background modelling

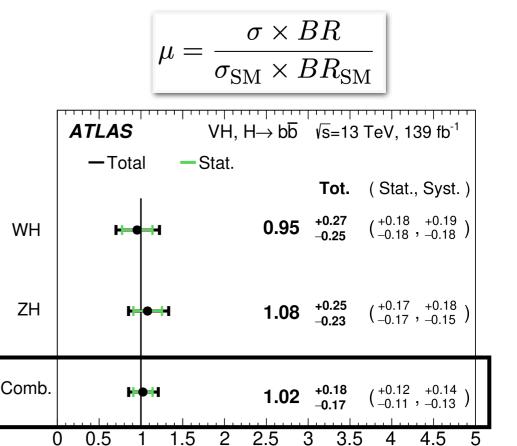


 Normalisations of the main backgrounds floated within the global likelihood fit (ttbar, W+jets, Z+jets)

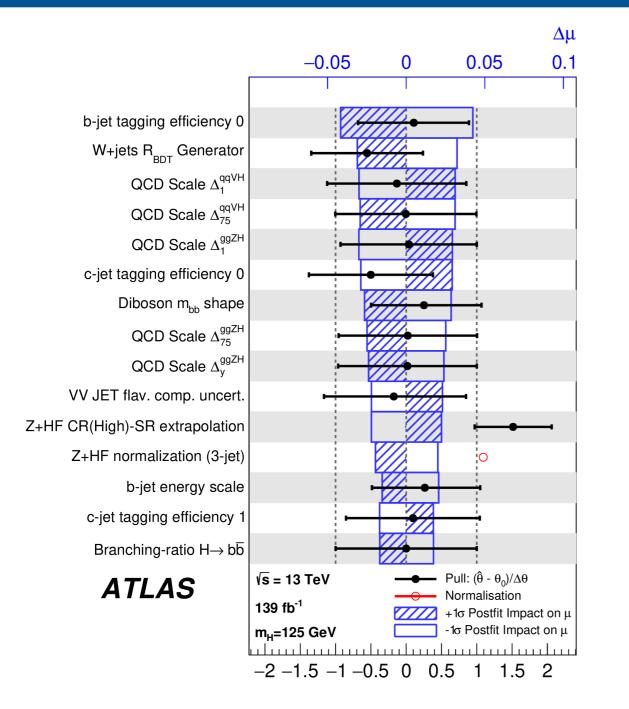
Process and Category	Normalisation factor		
$t\bar{t}$ 2-jet	0.98 ± 0.09		
$tar{t}$ 3-jet	0.93 ± 0.06		
W+ heavy flavors 2-jet	1.06 ± 0.11		
W+ heavy flavors 3-jet	1.15 ± 0.09		
Z + heavy flavors 2-jet, $75 < p_T^V < 150 \text{GeV}$	1.28 ± 0.08		
Z + heavy flavors 3-jet, $75 < p_T^V < 150 \text{GeV}$	1.17 ± 0.05		
Z + heavy flavors 2-jet, $p_T^V > 150 \text{GeV}$	1.16 ± 0.07		
$Z+$ heavy flavors 3-jet, $p_T^V > 150 \mathrm{GeV}$	1.09 ± 0.04		

- Systematic uncertainties are assigned to Monte Carlo background predictions under two types:
 - Acceptance uncertainties
 - To account for extrapolation between regions/categories and flavour composition
 - Shape uncertainties:
 - To quantify the effect of the change in the Monte Carlo template prediction
 - Derived from the shape variation on the p_T^V distribution and either m_{bb} distribution or using the BDT-based re-weighting method


W+jets shape uncertainties using BDT-based reweighting method

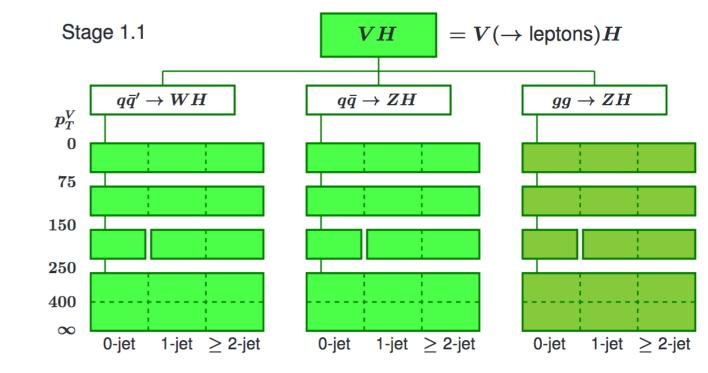

Results of the VH MVA

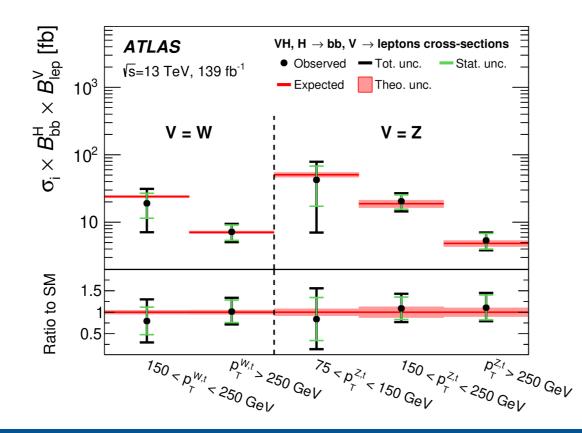
- Observation of the VH signal with 6.7σ (6.7σ expected)
- Observation of the *ZH* signal with 5.3σ (5.2σ expected)
- Strong evidence of the *WH* signal with 4.0σ (4.1σ expected)
- Signal strengths in good agreement with the Standard Model



 μ^{bb}_{VH}

Impact of the uncertainties


Source of uncertainty		VH	$\left \begin{array}{c} \sigma_{\mu} \\ WH \end{array} \right $	ZH	
Total		0.177	0.260	0.240	
Statistical		0.115	0.182	0.171	
Systematic		0.134	0.186	0.168	
Statistical uncertainties					
Data statistical		0.108	0.171	0.157	
$t\bar{t} \ e\mu$ control region		0.014	0.003	0.026	
Floating normalisations		0.034	0.061	0.045	
Experimenta	l uncertainties				
Jets		0.043	0.050	0.057	
$E_{\rm T}^{\rm miss}$			0.045	0.013	
Leptons		0.004	0.015	0.005	
	b-jets	0.045	0.025	0.064	
b-tagging	c-jets	0.035	0.068	0.010	
	light-flavour jets	0.009	0.004	0.014	
Pile-up		0.003	0.002	0.007	
Luminosity		0.016	0.016	0.016	
Theoretical a	and modelling unce	rtainties			
Signal		0.052	0.048	0.072	
Z + jets		0.032	0.013	0.059	
W + jets		0.040	0.079	0.009	
$t\overline{t}$		0.021	0.046	0.029	
Single top quark		0.019	0.048	0.015	
Diboson		0.033	0.033	0.039	
Multi-jet		0.005	0.017	0.005	
MC statistic	al	0.031	0.055	0.038	


- Statistical and systematic uncertainties at the same level
- Signal and background modelling have a significant impact as well as *b*-tagging and MC statistics

LAS Differential cross-section measurements

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

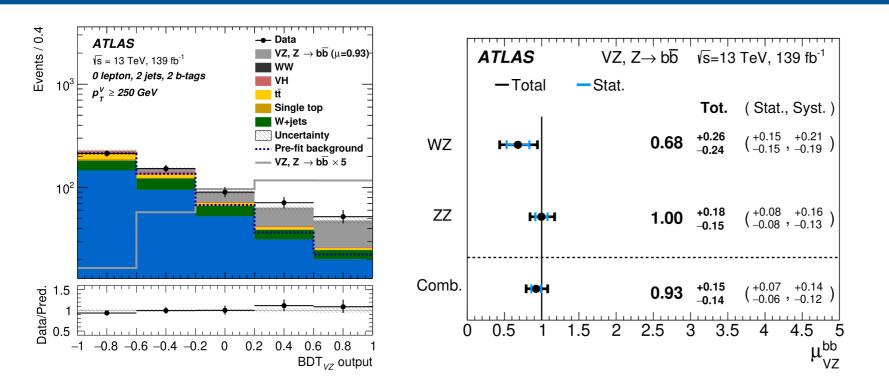
- Differential cross-section (STXS) measurements were performed
- STXS measurement in 5 p_T^V bins
- Measured σ*BR in each of the bins in agreement with the SM within uncertainties

EFT interpretation

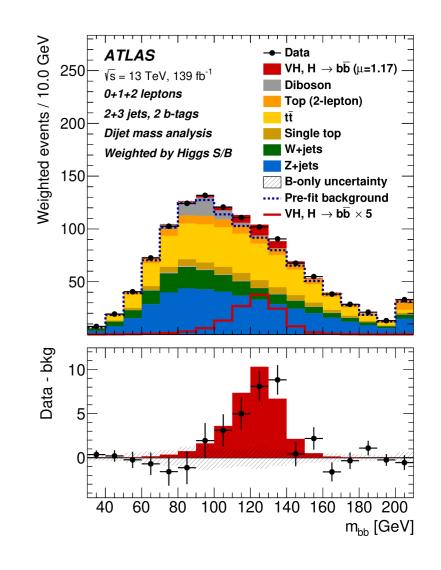


- Probe new physics/interactions by constraining EFT operators
 - Using STXS for differential measurements (analysis is sensitive to new physics at high p_T^V)
- Dim-6 operators added in the Warsaw basis:

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \mathcal{L}_{dim=6} = \mathcal{L}_{SM} + \frac{c_i}{\Lambda^2}O_i$$

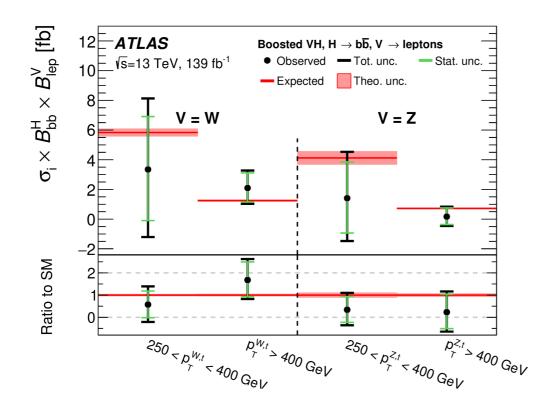

• The VH signal is sensitive to ~20 operators

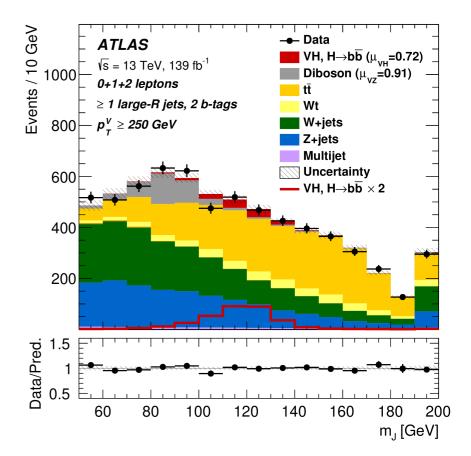
Wilson coefficient	Operator	Impacted vertex		
		Production	Decay	
c_{HWB}	$\mathcal{O}_{HWB} = H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$	HZZ		
c_{HW}	$\mathcal{O}_{HW} = H^{\dagger} H W^{I}_{\mu\nu} W^{\mu\nu}_{I}$	HZZ, HWW		
c_{Hq3}	$\mathcal{O}_{Hq}^{(3)} = (H^{\dagger} i \overleftrightarrow{D_{\mu}^{I}} H) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$	qqZH, qq'WH		
c_{Hq1}	$\mathcal{O}_{Hq}^{(1)} = (H^{\dagger} i \overleftrightarrow{D_{\mu}} H) (\bar{q}_p \gamma^{\mu} q_r)$	qqZH		
c_{Hu}	$\mathcal{O}_{Hu} = (H^{\dagger} i \overleftrightarrow{D_{\mu}} H) (\bar{u}_p \gamma^{\mu} u_r)$	qqZH		
c_{Hd}	$\mathcal{O}_{Hd} = (H^{\dagger} i \overleftrightarrow{D_{\mu}} H) (\bar{d}_p \gamma^{\mu} d_r)$	qqZH		
c_{dH}	$\mathcal{O}_{dH} = (H^{\dagger}H)(\bar{q}dH)$		Hbb	



Validation and cross-check

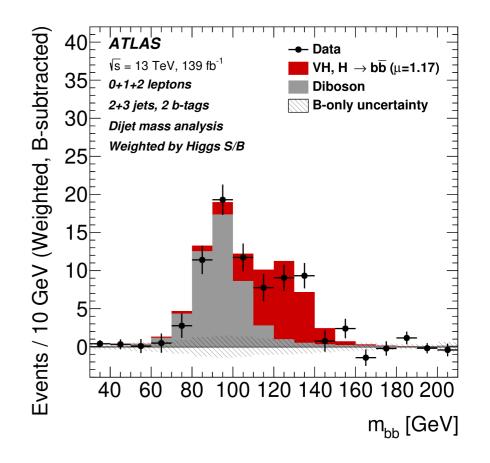
- The diboson analysis is a robust validation of the background model
 - By measuring the signal strength using the BDT_{VZ} as a discriminant
 - The results were shown to be in good agreement with the Standard Model prediction
- The di-jet mass analysis is a good cross-check that focuses on mbb
 - The measurement yields an observation of the VH signal with a significance of 5.5σ (4.9 σ expected)


COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK



The boosted analysis

- The analysis uses boosted techniques in the reconstruction of the jets and similar analysis strategy as resolved
- The signal measurement is extracted from a fit to the mass of the large-R jet
- Complementary phase space: $250 \text{GeV} < p_T^{V} < 400 \text{GeV}$ and $p_T^{V} > 400 \text{GeV}$
- STXS measurement in 4 $p_{T}{}^{V}$ bins and results consistent with the SM
 - EFT interpretation of the results
- Currently resolved and boosted are two independent analyses but large overlap in phase space



- VH, $H \rightarrow bb$ analysis performed with full Run-2 data:
 - MVA as the main analysis and di-jet mass and diboson analyses for cross-check and validation
- The results of the VH MVA measurements lead to:
 - VH (6.7 σ) and ZH (5.3 σ) observations
 - WH (4.0 σ) first strong evidence
- Observation of the VH (5.5 σ) signal in the di-jet mass analysis
- Measured σ^*BR in 5 STXS bin consistent with the SM predictions
- Results were interpreted in the EFT context
- First Boosted analysis results and STXS measurements
 - Results are all consistent with the SM predictions

Back-up